Leung Jeremy, Frazee Nicolas, Brace Alex, Ramanathan Arvind, Chong Lillian
bioRxiv. 2024 Aug 30:2024.08.28.610178. doi: 10.1101/2024.08.28.610178.
Our method identifies outliers in a latent space model of the system's sampled conformations that is periodically trained using a convolutional variational autoencoder. As a proof of principle, we applied our DL-enhanced WE method to simulate a millisecond protein folding process. To enable rapid tests, our simulations propagated discrete-state synthetic molecular dynamics trajectories using a generative, fine-grained Markov state model. Results revealed that our ″on-the-fly″ DL of outliers enhanced the efficiency of WE by >3-fold in estimating the folding rate constant. Our efforts are a significant step forward in the unsupervised learning of slow coordinates during rare event sampling.
我们的方法在系统采样构象的潜在空间模型中识别异常值,该模型使用卷积变分自编码器进行定期训练。作为原理验证,我们应用了深度增强的加权 ensemble 方法来模拟毫秒级的蛋白质折叠过程。为了实现快速测试,我们的模拟使用生成式细粒度马尔可夫状态模型传播离散状态的合成分子动力学轨迹。结果表明,我们对异常值的 “即时” 深度学习在估计折叠速率常数时将加权 ensemble 方法的效率提高了3倍以上。我们的工作在罕见事件采样期间慢坐标的无监督学习方面向前迈出了重要一步。