Zhang Yu, Wang Zhiwen, Ye Hang, Wei Mengdong, Gu Yaoyu, Qu Shaojie, Wang Yang, Hu Kuan, Zhao Junqi, Liu Chunsheng, Jia Dianzeng, Lin He
State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi, Xinjiang, 830017, China.
College of Electronic and Optical Engineering, Nanjing University of Posts and Telecommunications, Nanjing, 210023, China.
Small. 2024 Dec;20(49):e2406651. doi: 10.1002/smll.202406651. Epub 2024 Sep 11.
This study investigates the electrochemical properties of MgVO/VO composites for Aqueous Zinc-Ion Batteries (AZIBs) using both Density Functional Theory (DFT) calculations and experimental validation. DFT analysis reveals significant electron mobility and reactivity at the MgVO/VO interface, enhancing Zn storage capabilities. This theoretical prediction is confirmed experimentally by synthesizing a novel MgVO/VO composite that demonstrates superior electrochemical performance compared to pristine phases. Notably, the transition of the MgVO/VO composite into an amorphous structure during electrochemical cycling is pivotal, providing enhanced diffusion pathways and increased conductivity. The composite delivers a consistent specific capacity of 330.2 mAh g over 50 cycles at 0.1 A g and maintains 152.7 mAh g at an elevated current density of 20 A g after 2000 cycles, validating the synergy between DFT insights and experimental outcomes, and underscoring the potential of amorphous structures in enhancing battery performance.
本研究通过密度泛函理论(DFT)计算和实验验证,研究了用于水系锌离子电池(AZIBs)的MgVO/VO复合材料的电化学性能。DFT分析表明,MgVO/VO界面处具有显著的电子迁移率和反应活性,增强了锌存储能力。通过合成一种新型MgVO/VO复合材料,实验证实了这一理论预测,该复合材料与原始相相比表现出优异的电化学性能。值得注意的是,MgVO/VO复合材料在电化学循环过程中转变为非晶结构至关重要,它提供了增强的扩散途径并提高了导电性。该复合材料在0.1 A g下50个循环内的比容量稳定在330.2 mAh g,在20 A g的高电流密度下循环2000次后仍保持152.7 mAh g,验证了DFT见解与实验结果之间的协同作用,并突出了非晶结构在提高电池性能方面的潜力。