Rong Jinsheng, Zhang Jiangjiang, Wang Wenxin, Miao Junqian, Chen Lanli, Cui Shiqiang
Hebei Provincial Key Laboratory of Photoelectric Control on Surface and Interface, School of Sciences, Hebei University of Science and Technology, Shijiazhuang, 050018, China.
School of Mathematics and Physics, Hubei Polytechnic University, Huangshi, 435003, China.
Small. 2024 Dec;20(49):e2406908. doi: 10.1002/smll.202406908. Epub 2024 Sep 11.
The notorious polysulfide shuttling and uncontrollable Li-dendrite growth are the main obstacles to the marketization of Li-S batteries. Herein, a dual-functional material consisting of vacancy-rich quantum-sized Co nanodots anchored on a mesoporous carbon layer (v-Co/meso-C) is proposed. This material exposes more active sites to improve its reaction performance and simultaneously realizes excellent lithiophilicity and sulfiphilicity characteristics in Li-S electrochemistry. As Li metal deposition hosts, v-Co/meso-C shows small nucleation overpotential, low polarization, and ultra-long cycling stability in both half and symmetric cells, as confirmed by experimental studies. On the S cathode side, experimental and theoretical calculations demonstrate that v-Co/meso-C enhances the adsorption of polysulfides and boosts their catalytic conversion rate. This, in turn, suppresses the shuttle effect of polysulfides and improves sulfur utilization efficiency. Finally, a shuttle-free and dendrite-free v-Co/meso-C@Li//v-Co/meso-C@S full cell is fabricated, exhibiting excellent rate performance (739 mAh g at 5.0 C) and good cyclability (capacity decay rate is 0.033% and 0.035% per cycle at 2.0 and 5.0 C, respectively). Even a pouch cell with high sulfur loading (5.5 mg cm) and lean electrolyte/sulfur (4.8 µL mg) can still work 50 cycles with 80% capacity retention rate. This study shows far-reaching implications in the design of dendrite-free, shuttle-free Li-S batteries.
臭名昭著的多硫化物穿梭效应和不可控的锂枝晶生长是锂硫电池市场化的主要障碍。在此,提出了一种由锚定在介孔碳层上的富含空位的量子尺寸钴纳米点组成的双功能材料(v-Co/meso-C)。这种材料暴露了更多的活性位点以改善其反应性能,同时在锂硫电化学中实现了优异的亲锂性和亲硫性特征。实验研究证实,作为锂金属沉积主体,v-Co/meso-C在半电池和对称电池中均表现出小的成核过电位、低极化和超长的循环稳定性。在硫阴极一侧,实验和理论计算表明,v-Co/meso-C增强了多硫化物的吸附并提高了它们的催化转化率。这反过来抑制了多硫化物的穿梭效应并提高了硫的利用效率。最后,制备了无穿梭效应和无枝晶的v-Co/meso-C@Li//v-Co/meso-C@S全电池,表现出优异的倍率性能(在5.0 C时为739 mAh g)和良好的循环性能(在2.0和5.0 C时,容量衰减率分别为每循环0.033%和0.035%)。即使是具有高硫负载(5.5 mg cm)和贫电解质/硫(4.8 μL mg)的软包电池,仍能在50次循环中保持80%的容量保持率。这项研究对无枝晶、无穿梭效应的锂硫电池设计具有深远意义。