Adam Suliman, Kass Itamar, Krepel-Zussman Dana, Masarati Gal, Shemesh Dorit, Sharir-Ivry Avital
InterX LTD (a Subsidiary of NeoTX Therapeutics Ltd), 2 Pekeris Street, Rehovot 7670202, Israel.
J Chem Theory Comput. 2024 Sep 11. doi: 10.1021/acs.jctc.3c01337.
A major challenge in computer-aided drug design is predicting relative binding energies of different molecules to a target protein using fast and accurate free-energy calculation methods. Free-energy calculations are primarily computed by utilizing classical molecular dynamics simulations based on all-atom force fields (FF) to model the interactions in the system. The present standard classical all-atom FFs contain fixed partial charges on the atoms, and hence electrostatic interactions are modeled between them. The parametrization process to determine these partial charges usually relies on quantum mechanics or semiempirical calculations of the molecule in the gas phase or homogeneous water surrounding. These present standard parametrization schemes of the partial charges neglect, therefore, polarization effects from the protein surrounding. The absence of protein polarization effects can lead to significant errors in free-energy calculations in proteins. We present a parametrization scheme for the partial charges of ligands, named protein-induced polarization (PIP) charges, which account for the electrostatic polarization due to the protein surrounding. The scheme involves single-point quantum mechanics/molecular mechanics calculations of the ligand charges in the protein/water surrounding. Using PIP ligand partial charges, we have calculated the relative binding free energies (RBFEs) of well-studied protein-ligand systems. We show here that RBFEs computed with PIP charges are either significantly improved or at least comparable to those computed with nonpolarized standard GAFF charges. Overall, we present a simple-to-use parametrization scheme to include protein polarization in any type of binding free-energy calculations. The parametrization scheme increases the accuracy in RBFE calculations, while it does not add significant computation time to standard parametrization procedures.
计算机辅助药物设计中的一个主要挑战是使用快速且准确的自由能计算方法来预测不同分子与目标蛋白的相对结合能。自由能计算主要通过基于全原子力场(FF)的经典分子动力学模拟来进行,以对系统中的相互作用进行建模。目前的标准经典全原子力场在原子上包含固定的部分电荷,因此在它们之间对静电相互作用进行建模。确定这些部分电荷的参数化过程通常依赖于分子在气相或均匀水环境中的量子力学或半经验计算。因此,这些目前的部分电荷标准参数化方案忽略了来自周围蛋白质的极化效应。蛋白质极化效应的缺失会导致蛋白质中自由能计算出现显著误差。我们提出了一种用于配体部分电荷的参数化方案,称为蛋白质诱导极化(PIP)电荷,它考虑了由于周围蛋白质引起的静电极化。该方案涉及对蛋白质/水环境中配体电荷的单点量子力学/分子力学计算。使用PIP配体部分电荷,我们计算了经过充分研究的蛋白质-配体系统的相对结合自由能(RBFE)。我们在此表明,用PIP电荷计算的RBFE要么显著改善,要么至少与用非极化标准GAFF电荷计算的结果相当。总体而言,我们提出了一种易于使用的参数化方案,以在任何类型的结合自由能计算中纳入蛋白质极化。该参数化方案提高了RBFE计算的准确性,同时不会给标准参数化程序增加显著的计算时间。