Suppr超能文献

从大规模第一性原理量子力学计算中得到的结合自由能:在配体水合能中的应用。

Free energies of binding from large-scale first-principles quantum mechanical calculations: application to ligand hydration energies.

机构信息

School of Chemistry, University of Southampton, Southampton, Hampshire SO17 1BJ, United Kingdom.

出版信息

J Phys Chem B. 2013 Aug 15;117(32):9478-85. doi: 10.1021/jp404518r. Epub 2013 Aug 5.

Abstract

Schemes of increasing sophistication for obtaining free energies of binding have been developed over the years, where configurational sampling is used to include the all-important entropic contributions to the free energies. However, the quality of the results will also depend on the accuracy with which the intermolecular interactions are computed at each molecular configuration. In this context, the energy change associated with the rearrangement of electrons (electronic polarization and charge transfer) upon binding is a very important effect. Classical molecular mechanics force fields do not take this effect into account explicitly, and polarizable force fields and semiempirical quantum or hybrid quantum-classical (QM/MM) calculations are increasingly employed (at higher computational cost) to compute intermolecular interactions in free-energy schemes. In this work, we investigate the use of large-scale quantum mechanical calculations from first-principles as a way of fully taking into account electronic effects in free-energy calculations. We employ a one-step free-energy perturbation (FEP) scheme from a molecular mechanical (MM) potential to a quantum mechanical (QM) potential as a correction to thermodynamic integration calculations within the MM potential. We use this approach to calculate relative free energies of hydration of small aromatic molecules. Our quantum calculations are performed on multiple configurations from classical molecular dynamics simulations. The quantum energy of each configuration is obtained from density functional theory calculations with a near-complete psinc basis set on over 600 atoms using the ONETEP program.

摘要

多年来,人们开发了越来越复杂的方案来获取结合自由能,其中配置采样用于包括对自由能至关重要的熵贡献。然而,结果的质量也将取决于在每个分子构象上计算分子间相互作用的准确性。在这种情况下,结合时电子(电子极化和电荷转移)重排所引起的能量变化是一个非常重要的效应。经典的分子力学力场没有明确考虑到这一效应,而越来越多地使用极化力场和半经验量子或混合量子-经典(QM/MM)计算(计算成本更高)来计算自由能方案中的分子间相互作用。在这项工作中,我们研究了使用从第一性原理出发的大规模量子力学计算作为在自由能计算中充分考虑电子效应的一种方法。我们采用从分子力学(MM)势能到量子力学(QM)势能的一步自由能微扰(FEP)方案作为 MM 势能中热力学积分计算的修正。我们使用这种方法来计算小分子水合的相对自由能。我们的量子计算是在经典分子动力学模拟的多个构象上进行的。每个构象的量子能是通过使用 ONETEP 程序在超过 600 个原子上使用近完整的 psinc 基组进行密度泛函理论计算获得的。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验