Department of Chemistry, Vanderbilt Ingram Cancer Center, and Vanderbilt Center for Structural Biology, Vanderbilt University, Nashville, Tennessee 37235, United States.
Department of Biochemistry, School of Medicine, Vanderbilt Ingram Cancer Center, and Vanderbilt Center for Structural Biology, Vanderbilt University, Nashville, Tennessee 37232, United States.
Biochemistry. 2024 Oct 1;63(19):2425-2439. doi: 10.1021/acs.biochem.4c00387. Epub 2024 Sep 11.
α-l-(3'-2')-Threofuranosyl nucleic acid (TNA) pairs with itself, cross-pairs with DNA and RNA, and shows promise as a tool in synthetic genetics, diagnostics, and oligonucleotide therapeutics. We studied primer insertion and extension reactions catalyzed by human trans-lesion synthesis (TLS) DNA polymerase η (hPol η) opposite a TNA-modified template strand without and in combination with -alkyl thymine lesions. Across TNA-T (tT), hPol η inserted mostly dAMP and dGMP, dTMP and dCMP with lower efficiencies, followed by extension of the primer to a full-length product. hPol η inserted dAMP opposite -methyl and -ethyl analogs of tT, albeit with reduced efficiencies relative to tT. Crystal structures of ternary hPol η complexes with template tT and -methyl tT at the insertion and extension stages demonstrated that the shorter backbone and different connectivity of TNA compared to DNA (3' → 2' versus 5' → 3', respectively) result in local differences in sugar orientations, adjacent phosphate spacings, and directions of glycosidic bonds. The 3'-OH of the primer's terminal thymine was positioned at 3.4 Å on average from the α-phosphate of the incoming dNTP, consistent with insertion opposite and extension past the TNA residue by hPol η. Conversely, the crystal structure of a ternary hPol η·DNA·tTTP complex revealed that the primer's terminal 3'-OH was too distant from the tTTP α-phosphate, consistent with the inability of the polymerase to incorporate TNA. Overall, our study provides a better understanding of the tolerance of a TLS DNA polymerase vis-à-vis unnatural nucleotides in the template and as the incoming nucleoside triphosphate.
α-l-(3'-2')-呋喃核糖核酸 (TNA) 自身配对,与 DNA 和 RNA 交叉配对,并有望成为合成遗传学、诊断学和寡核苷酸治疗学的工具。我们研究了人类跨损伤合成 (TLS) DNA 聚合酶 η (hPol η) 在没有和结合 - 烷基胸腺嘧啶损伤的情况下,对 TNA 修饰模板链的引物插入和延伸反应。在 TNA-T (tT) 中,hPol η 主要插入 dAMP 和 dGMP,dTMP 和 dCMP 的效率较低,随后引物延伸至全长产物。hPol η 插入 dAMP 与 tT 的 - 甲基和 - 乙基类似物相对,尽管与 tT 相比效率降低。含有模板 tT 和 - 甲基 tT 的三元 hPol η 复合物的晶体结构在插入和延伸阶段表明,与 DNA(3' → 2' 与 5' → 3' 分别)相比,TNA 的较短骨架和不同的连接性导致糖取向、相邻磷酸间隔和糖苷键方向的局部差异。引物末端胸腺嘧啶的 3'-OH 平均位于 3.4 Å 处,与进入的 dNTP 的α-磷酸相对,这与 hPol η 在 TNA 残基处的插入和延伸相对应。相反,三元 hPol η·DNA·tTTP 复合物的晶体结构表明,引物的末端 3'-OH 与 tTTP α-磷酸的距离太远,这与聚合酶无法掺入 TNA 一致。总体而言,我们的研究提供了对 TLS DNA 聚合酶在模板中和作为进入的核苷三磷酸中对非天然核苷酸的耐受性的更好理解。