Suppr超能文献

评估人类假设的中枢敏化是否能提高 STarT 后背筛查工具在急性腰痛中的预测准确性?

Can assessment of human assumed central sensitisation improve the predictive accuracy of the STarT Back screening tool in acute low back pain?

机构信息

Centre for Pain IMPACT, Neuroscience Research Australia (NeuRA), Randwick, New South Wales, Australia; School of Health Sciences, Faculty of Medicine and Health, University of New South Wales, UNSW Sydney, Australia; School of Health Sciences, College of Health, Medicine and Wellbeing, The University of Newcastle, Callaghan, New South Wales, Australia.

Centre for Pain IMPACT, Neuroscience Research Australia (NeuRA), Randwick, New South Wales, Australia; Stats Central, Mark Wainwright Analytical Centre, University of New South Wales, UNSW Sydney, New South Wales, Australia.

出版信息

Musculoskelet Sci Pract. 2024 Nov;74:103177. doi: 10.1016/j.msksp.2024.103177. Epub 2024 Sep 7.

Abstract

BACKGROUND

The STarT Back Screening Tool (SBT) is recommended to provide risk-stratified care in low back pain (LBP), yet its predictive value is moderate for disability and low for pain severity. Assessment of human assumed central sensitisation (HACS) in conjunction with the SBT may improve its predictive accuracy.

OBJECTIVES

To examine whether assessment of HACS in acute LBP improves the predictive accuracy of the SBT for LBP recovery at six months in people with acute non-specific LBP.

DESIGN

A prospective longitudinal study.

METHOD

Data were drawn from the UPWaRD study. One hundred and twenty people with acute non-specific LBP were recruited from the community. Baseline measures included SBT risk status, nociceptive flexor withdrawal reflex, pressure and heat pain thresholds and conditioned pain modulation. Primary outcome was the presence of LBP (pain numeric rating scale ≥1 and Roland Morris Disability Questionnaire score ≥3) at six-month follow-up. Regression coefficients were penalised using the least absolute shrinkage and selection operator technique to select predictor variables. Internal validation was performed using ten-fold cross-validation.

RESULTS/FINDINGS: SBT risk status alone did not predict the presence of LBP at six months (area under receiver operating characteristic curve [AUC] = 0.58). Adding measures of HACS to the SBT did not improve discrimination for whether LBP was present at six months (AUC = 0.59).

CONCLUSIONS

This study confirmed the suboptimal predictive accuracy of the SBT, administered during acute LBP, for LBP recovery at six months. Assessment of HACS in acute LBP does not improve the predictive accuracy of the SBT.

摘要

背景

STarT 背部筛查工具(SBT)推荐用于为腰痛(LBP)提供风险分层护理,但它对残疾的预测值适中,对疼痛严重程度的预测值较低。结合 SBT 评估人类假设的中枢敏化(HACS)可能会提高其预测准确性。

目的

研究急性 LBP 中 HACS 的评估是否能提高 SBT 在急性非特异性 LBP 患者中预测 6 个月时 LBP 恢复的准确性。

设计

前瞻性纵向研究。

方法

数据来自 UPWaRD 研究。从社区招募了 120 名急性非特异性 LBP 患者。基线测量包括 SBT 风险状况、伤害性屈肌退缩反射、压力和热痛阈值以及条件性疼痛调制。主要结局是在 6 个月随访时是否存在 LBP(疼痛数字评分量表≥1 和 Roland Morris 残疾问卷评分≥3)。使用最小绝对收缩和选择算子技术对回归系数进行惩罚,以选择预测变量。采用十折交叉验证进行内部验证。

结果/发现:SBT 风险状况本身不能预测 6 个月时的 LBP (受试者工作特征曲线下面积 [AUC] = 0.58)。将 HACS 测量值添加到 SBT 中并不能提高对 6 个月时是否存在 LBP 的区分能力(AUC = 0.59)。

结论

本研究证实了 SBT 在急性 LBP 中对 6 个月时 LBP 恢复的预测准确性不佳。急性 LBP 中 HACS 的评估并不能提高 SBT 的预测准确性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验