Suppr超能文献

具有时间感知的双向一致性的半监督时间序列分类。

Bidirectional consistency with temporal-aware for semi-supervised time series classification.

机构信息

School of Computer Science and Technology, Harbin University of Science and Technology, Harbin 150080, China.

出版信息

Neural Netw. 2024 Dec;180:106709. doi: 10.1016/j.neunet.2024.106709. Epub 2024 Sep 7.

Abstract

Semi-supervised learning (SSL) has achieved significant success due to its capacity to alleviate annotation dependencies. Most existing SSL methods utilize pseudo-labeling to propagate useful supervised information for training unlabeled data. However, these methods ignore learning temporal representations, making it challenging to obtain a well-separable feature space for modeling explicit class boundaries. In this work, we propose a semi-supervised Time Series classification framework via Bidirectional Consistency with Temporal-aware (TS-BCT), which regularizes the feature space distribution by learning temporal representations through pseudo-label-guided contrastive learning. Specifically, TS-BCT utilizes time-specific augmentation to transform the entire raw time series into two distinct views, avoiding sampling bias. The pseudo-labels for each view, generated through confidence estimation in the feature space, are then employed to propagate class-related information into unlabeled samples. Subsequently, we introduce a temporal-aware contrastive learning module that learns discriminative temporal-invariant representations. Finally, we design a bidirectional consistency strategy by incorporating pseudo-labels from two distinct views into temporal-aware contrastive learning to construct a class-related contrastive pattern. This strategy enables the model to learn well-separated feature spaces, making class boundaries more discriminative. Extensive experimental results on real-world datasets demonstrate the effectiveness of TS-BCT compared to baselines.

摘要

半监督学习(SSL)由于能够减轻标注依赖性而取得了重大成功。大多数现有的 SSL 方法利用伪标签来传播有用的监督信息,以训练未标注的数据。然而,这些方法忽略了学习时间表示,因此难以获得用于建模显式类边界的良好可分离特征空间。在这项工作中,我们提出了一种通过带有时间感知的双向一致性的半监督时间序列分类框架(TS-BCT),该框架通过伪标签引导的对比学习来正则化特征空间分布,从而学习时间表示。具体来说,TS-BCT 利用时间特定的增强技术将整个原始时间序列转换为两个不同的视图,避免了采样偏差。通过在特征空间中进行置信度估计为每个视图生成伪标签,然后将类相关信息传播到未标注的样本中。随后,我们引入了一个时间感知的对比学习模块,学习判别性的时间不变表示。最后,我们通过将来自两个不同视图的伪标签纳入时间感知的对比学习中,设计了一种双向一致性策略,以构建类相关的对比模式。该策略使模型能够学习到良好分离的特征空间,使类边界更具判别性。在真实数据集上的广泛实验结果表明,与基线相比,TS-BCT 是有效的。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验