Suppr超能文献

ATEC23 挑战赛:利用组织病理学图像自动预测卵巢癌的治疗效果。

ATEC23 Challenge: Automated prediction of treatment effectiveness in ovarian cancer using histopathological images.

机构信息

Graduate Institute of Biomedical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan.

Graduate Institute of Biomedical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan.

出版信息

Med Image Anal. 2025 Jan;99:103342. doi: 10.1016/j.media.2024.103342. Epub 2024 Sep 5.

Abstract

Ovarian cancer, predominantly epithelial ovarian cancer (EOC), is a global health concern due to its high mortality rate. Despite the progress made during the last two decades in the surgery and chemotherapy of ovarian cancer, more than 70% of advanced patients are with recurrent cancer and disease. Bevacizumab is a humanized monoclonal antibody, which blocks VEGF signaling in cancer, inhibits angiogenesis and causes tumor shrinkage, and has been recently approved by the FDA as a monotherapy for advanced ovarian cancer in combination with chemotherapy. Unfortunately, Bevacizumab may also induce harmful adverse effects, such as hypertension, bleeding, arterial thromboembolism, poor wound healing and gastrointestinal perforation. Given the expensive cost and unwanted toxicities, there is an urgent need for predictive methods to identify who could benefit from bevacizumab. Of the 18 (approved) requests from 5 countries, 6 teams using 284 whole section WSIs for training to develop fully automated systems submitted their predictions on a test set of 180 tissue core images, with the corresponding ground truth labels kept private. This paper summarizes the 5 qualified methods successfully submitted to the international challenge of automated prediction of treatment effectiveness in ovarian cancer using the histopathologic images (ATEC23) held at the 26th International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI) in 2023 and evaluates the methods in comparison with 5 state of the art deep learning approaches. This study further assesses the effectiveness of the presented prediction models as indicators for patient selection utilizing both Cox proportional hazards analysis and Kaplan-Meier survival analysis. A robust and cost-effective deep learning pipeline for digital histopathology tasks has become a necessity within the context of the medical community. This challenge highlights the limitations of current MIL methods, particularly within the context of prognosis-based classification tasks, and the importance of DCNNs like inception that has nonlinear convolutional modules at various resolutions to facilitate processing the data in multiple resolutions, which is a key feature required for pathology related prediction tasks. This further suggests the use of feature reuse at various scales to improve models for future research directions. In particular, this paper releases the labels of the testing set and provides applications for future research directions in precision oncology to predict ovarian cancer treatment effectiveness and facilitate patient selection via histopathological images.

摘要

卵巢癌,主要是上皮性卵巢癌(EOC),由于其死亡率高,是一个全球性的健康问题。尽管在过去的二十年中,卵巢癌的手术和化疗取得了进展,但超过 70%的晚期患者仍有复发癌症和疾病。贝伐单抗是一种人源化单克隆抗体,可阻断癌症中的 VEGF 信号,抑制血管生成并导致肿瘤缩小,最近已被 FDA 批准与化疗联合用于晚期卵巢癌的单药治疗。不幸的是,贝伐单抗也可能引起有害的不良反应,如高血压、出血、动脉血栓栓塞、伤口愈合不良和胃肠道穿孔。鉴于昂贵的成本和不必要的毒性,迫切需要预测方法来确定谁可以从贝伐单抗中受益。在来自 5 个国家的 18 项(批准)请求中,有 6 个团队使用 284 张全切片 WSIs 进行训练,以开发全自动系统,并在 180 张组织芯图像的测试集上提交了他们的预测结果,相应的地面真实标签被保密。本文总结了在 2023 年第 26 届国际医学图像计算和计算机辅助干预会议(MICCAI)上举行的使用组织病理学图像(ATEC23)自动预测卵巢癌治疗效果的国际挑战中成功提交的 5 种合格方法,并将这些方法与 5 种最先进的深度学习方法进行了比较。本研究还进一步评估了所提出的预测模型作为利用 Cox 比例风险分析和 Kaplan-Meier 生存分析选择患者的指标的有效性。在医疗界,用于数字组织病理学任务的强大且具有成本效益的深度学习管道已经成为必要。这项挑战突出了当前 MIL 方法的局限性,特别是在基于预后的分类任务方面,以及像 inception 这样的 DCNN 的重要性,inception 具有各种分辨率的非线性卷积模块,以方便以多种分辨率处理数据,这是病理学相关预测任务所需的关键特征。这进一步表明,在未来的研究方向中,使用各种尺度的特征重用来改进模型。特别是,本文发布了测试集的标签,并为未来的精准肿瘤学研究方向提供了应用,以通过组织病理学图像预测卵巢癌治疗效果并促进患者选择。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验