Mallya Mayur, Mirabadi Ali Khajegili, Farnell David, Farahani Hossein, Bashashati Ali
Faculty of Science, University of British Columbia, 2207 Main Mall, Vancouver, V6T 1Z4, British Columbia, Canada.
Department of Pathology and Laboratory Medicine, University of British Columbia, 2211 Wesbrook Mall, Vancouver, V6T 1Z7, British Columbia, Canada.
Discov Oncol. 2025 Feb 17;16(1):196. doi: 10.1007/s12672-025-01973-x.
Bevacizumab is a widely studied targeted therapeutic drug used in conjunction with standard chemotherapy for the treatment of recurrent ovarian cancer. While its administration has been shown to increase progression-free survival (PFS) in patients with advanced-stage ovarian cancer, the lack of identifiable biomarkers for predicting patient response has been a major roadblock in its effective adoption towards personalized medicine.
In this work, we leverage the latest histopathology foundation models trained on large-scale whole slide image (WSI) datasets to extract ovarian tumor tissue features for predicting bevacizumab response from WSIs.
Our extensive experiments across a combination of different histopathology foundation models and multiple instance learning (MIL) strategies demonstrate the capability of these large models in predicting bevacizumab response in ovarian cancer patients with the best models achieving a patient-level balanced accuracy score close to 70%. Furthermore, these models can effectively stratify high- and low-risk patients (p < 0.05) during the first year of bevacizumab treatment.
This work highlights the utility of histopathology foundation models to predict response to bevacizumab treatment from WSIs. The high-attention regions of the WSIs highlighted by these models not only aid the model explainability but also serve as promising imaging biomarkers for treatment prognosis.
贝伐单抗是一种经过广泛研究的靶向治疗药物,与标准化疗联合用于治疗复发性卵巢癌。虽然已证明其给药可提高晚期卵巢癌患者的无进展生存期(PFS),但缺乏可识别的生物标志物来预测患者反应一直是其有效应用于个性化医疗的主要障碍。
在这项工作中,我们利用在大规模全切片图像(WSI)数据集上训练的最新组织病理学基础模型,从WSI中提取卵巢肿瘤组织特征,以预测贝伐单抗反应。
我们在不同组织病理学基础模型和多实例学习(MIL)策略的组合上进行的广泛实验表明,这些大型模型能够预测卵巢癌患者的贝伐单抗反应,最佳模型的患者水平平衡准确率接近70%。此外,这些模型可以在贝伐单抗治疗的第一年有效地对高风险和低风险患者进行分层(p<0.05)。
这项工作突出了组织病理学基础模型从WSI预测贝伐单抗治疗反应的实用性。这些模型突出显示的WSI高关注区域不仅有助于模型的可解释性,还可作为有前景的影像学生物标志物用于治疗预后。