Suppr超能文献

考虑到滤波器的类型和厚度,改进医疗成像系统中 X 射线管辐射场中的空气比释动能的测定。

Improved air kerma determination in the radiation field of the X-ray tube used in medical imaging systems, considering the type and thickness of the filter.

机构信息

Sussex Artificial Intelligence Institute, Zhejiang Gongshang University, Hangzhou, 310018, China; Shangyu Institute of Science and Engineering Co.Ltd., Hangzhou Dianzi University, Shaoxing, 312300, China.

Division of Pulmonary Medicine, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Heart and Lung, Wenzhou, Zhejiang, 325000, China; Shangyu Institute of Science and Engineering Co.Ltd., Hangzhou Dianzi University, Shaoxing, 312300, China.

出版信息

Appl Radiat Isot. 2024 Dec;214:111481. doi: 10.1016/j.apradiso.2024.111481. Epub 2024 Aug 23.

Abstract

In diagnostic radiology, the air kerma is an essential parameter. Radiologists consider the air kerma, when calculating organ doses and dangers to patients. The intensity of the radiation beam is represented by the air kerma, which is the value of energy wasted by a photon as it travels through air. Because of the heel effect in X-ray sources, air kerma varies throughout the field of medical imaging systems. One possible contributor to this discrepancy is the X-ray tube's voltage. In this study, an approach has been proposed for predicting the air kerma anywhere inside the field of X-ray beams utilized in medical diagnostic imaging systems. As a first step, a diagnostic imaging system was modelled using the Monte Carlo N-Particle platform. We used a tungsten target and aluminum and beryllium filters of varying thicknesses to recreate the X-ray tube. The air kerma has been measured in different parts of the conical X-ray beam that is working at 30, 50, 70, 90, 110, 130, and 150 kV. This gives enough data for training neural networks. The voltage of the X-ray tube, filter type, filter thickness, and the coordinates of each point used to calculate the air kerma were all inputs to the MLP neural network. The MLP architecture, known for its significant advancements in research and expanding applications, was trained to predict the quantity of air kerma as its output. Specifically, by considering X-ray tube filters of varying thicknesses, the trained MLP model demonstrated its capability to accurately predict the air kerma at every point within the X-ray field for a range of X-ray tube voltages typically used in medical diagnostic radiography (30-150 kV).

摘要

在诊断放射学中,空气比释动能是一个重要的参数。放射科医生在计算器官剂量和患者危险时会考虑空气比释动能。射线束的强度由空气比释动能表示,它是光子穿过空气时消耗的能量值。由于 X 射线源中的足跟效应,空气比释动能在整个医学成像系统的射野中会发生变化。这种差异的一个可能原因是 X 射线管的电压。在这项研究中,提出了一种预测医学诊断成像系统中使用的 X 射线束射野内任意点空气比释动能的方法。作为第一步,使用蒙特卡罗 N-粒子平台对诊断成像系统进行建模。我们使用钨靶和不同厚度的铝和铍过滤器来模拟 X 射线管。在工作电压为 30、50、70、90、110、130 和 150kV 的锥形 X 射线束的不同部位测量了空气比释动能。这为训练神经网络提供了足够的数据。X 射线管的电压、滤波器类型、滤波器厚度以及用于计算空气比释动能的每个点的坐标都是 MLP 神经网络的输入。MLP 神经网络以其在研究和应用扩展方面的显著进步而闻名,被训练来预测空气比释动能的数量作为其输出。具体来说,通过考虑不同厚度的 X 射线管滤波器,训练有素的 MLP 模型展示了其在医学诊断放射学中常用的一系列 X 射线管电压(30-150kV)范围内,在 X 射线场的每个点准确预测空气比释动能的能力。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验