Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; University of Chinese Academy of Sciences, Beijing 100049, China.
Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; Sanya Institute of Ocean Eco-Environmental Engineering, Sanya 572000, China.
Sci Total Environ. 2024 Nov 25;953:176164. doi: 10.1016/j.scitotenv.2024.176164. Epub 2024 Sep 12.
Nanoplastics are ubiquitous in marine environments, exhibiting high bioavailability and potential toxicity to marine organisms. However, the impacts of nanoplastics with various surface modifications on marine microalgae remain largely unexplored. This study explored the toxicity mechanisms of two nanoplastic types-polystyrene (PS) and polymethyl methacrylate (PMMA)-with distinct surface modifications on Skeletonema costatum at cellular and molecular levels. Results showed that nanoplastics significantly impaired the growth of microalgae, particularly PS-NH, which caused the most pronounced growth inhibition, reaching 56.99 % after a 96-h exposure at 50 mg/L. Transcriptomic profiling revealed that nanoplastics disrupted the expression of genes predominantly involved in ribosome biogenesis, aminoacyl-tRNA biosynthesis, amino acid metabolism, and carbohydrate metabolism pathways. The integrated biochemical and transcriptomic evidence highlighted that PS-NH nanoplastics had the most adverse impact on microalgae, affecting fundamental pathways such as ribosome biogenesis, energy metabolism, photosynthesis, and oxidative stress. Our findings underscore the influence of surface-modified nanoplastics on algal growth and contribute new understanding to the toxicity mechanisms of these nanoplastics in marine microalgae, offering critical information for assessing the risks of emerging pollutants.
纳米塑料在海洋环境中无处不在,具有较高的生物可利用性和对海洋生物潜在的毒性。然而,具有不同表面修饰的纳米塑料对海洋微藻的影响在很大程度上仍未得到探索。本研究在细胞和分子水平上探讨了两种具有不同表面修饰的纳米塑料(聚苯乙烯(PS)和聚甲基丙烯酸甲酯(PMMA))对中肋骨条藻的毒性机制。结果表明,纳米塑料显著抑制了微藻的生长,特别是 PS-NH,在 50mg/L 暴露 96 小时后,其生长抑制率达到 56.99%。转录组分析显示,纳米塑料扰乱了核糖体生物发生、氨酰-tRNA 生物合成、氨基酸代谢和碳水化合物代谢途径中基因的表达。综合的生化和转录组证据表明,PS-NH 纳米塑料对微藻的影响最大,影响了核糖体生物发生、能量代谢、光合作用和氧化应激等基本途径。我们的研究结果强调了表面修饰的纳米塑料对藻类生长的影响,并为这些纳米塑料在海洋微藻中的毒性机制提供了新的认识,为评估新兴污染物的风险提供了关键信息。