Suppr超能文献

工程应力作为丝状病毒形态形成的一个诱因。

Engineering stress as a motivation for filamentous virus morphology.

作者信息

McMahon Andrew, Vijayakrishnan Swetha, El Sayyed Hafez, Groves Danielle, Conley Michaela J, Hutchinson Edward, Robb Nicole C

机构信息

Biological Physics Research Group, Clarendon Laboratory, Department of Physics, University of Oxford, Oxford, United Kingdom; Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, University of Oxford, Oxford, United Kingdom; Warwick Medical School, University of Warwick, Coventry, United Kingdom.

MRC-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, United Kingdom.

出版信息

Biophys Rep (N Y). 2024 Dec 11;4(4):100181. doi: 10.1016/j.bpr.2024.100181. Epub 2024 Sep 10.

Abstract

Many viruses are pleomorphic in shape and size, with pleomorphism often thought to correlate with infectivity, pathogenicity, or virus survival. For example, influenza and respiratory syncytial virus particles range in size from small spherical virions to filaments reaching many micrometers in length. We have used a pressure vessel model to investigate how the length and width of spherical and filamentous virions can vary for a given critical stress and fluorescence super-resolution microscopy along with image analysis tools to fit imaged influenza viruses to the model. We have shown that influenza virion dimensions fit within the theoretical limits of the model, suggesting that filament formation may be a way to increase an individual virus's volume without particle rupture. We have also used cryoelectron microscopy to investigate influenza and respiratory syncytial virus dimensions at the extrema of the model and used the pressure vessel model to explain the lack of alternative virus particle geometries. Our approach offers insight into the possible purpose of filamentous virus morphology and is applicable to a wide range of other biological entities, including bacteria and fungi.

摘要

许多病毒在形状和大小上具有多形性,人们通常认为多形性与感染性、致病性或病毒存活有关。例如,流感病毒和呼吸道合胞病毒颗粒的大小范围从小球形病毒粒子到长达数微米的丝状粒子。我们使用了一个压力容器模型来研究在给定的临界应力下球形和丝状病毒粒子的长度和宽度如何变化,并使用荧光超分辨率显微镜以及图像分析工具将成像的流感病毒拟合到该模型中。我们已经表明,流感病毒粒子的尺寸符合该模型的理论极限,这表明丝状形成可能是在不发生粒子破裂的情况下增加单个病毒体积的一种方式。我们还使用冷冻电子显微镜研究了模型极值处的流感病毒和呼吸道合胞病毒的尺寸,并使用压力容器模型来解释缺乏其他病毒粒子几何形状的原因。我们的方法为丝状病毒形态的可能目的提供了见解,并且适用于广泛的其他生物实体,包括细菌和真菌。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cb08/11447354/0a5743535e1a/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验