Suppr超能文献

弯曲和刺穿流感脂质包膜。

Bending and puncturing the influenza lipid envelope.

机构信息

Drittes Physikalisches Institut, Georg-August-Universität, Göttingen, Germany.

Drittes Physikalisches Institut, Georg-August-Universität, Göttingen, Germany.

出版信息

Biophys J. 2011 Feb 2;100(3):637-645. doi: 10.1016/j.bpj.2010.12.3701.

Abstract

Lysosomes, enveloped viruses, as well as synaptic and secretory vesicles are all examples of natural nanocontainers (diameter ≈ 100 nm) which specifically rely on their lipid bilayer to protect and exchange their contents with the cell. We have applied methods primarily based on atomic force microscopy and finite element modeling that allow precise investigation of the mechanical properties of the influenza virus lipid envelope. The mechanical properties of small, spherical vesicles made from PR8 influenza lipids were probed by an atomic force microscopy tip applying forces up to 0.2 nN, which led to an elastic deformation up to 20%, on average. The liposome deformation was modeled using finite element methods to extract the lipid bilayer elastic properties. We found that influenza liposomes were softer than what would be expected for a gel phase bilayer and highly deformable: Consistent with previous suggestion that influenza lipids do not undergo a major phase transition, we observe that the stiffness of influenza liposomes increases gradually and weakly (within one order of magnitude) with temperature. Surprisingly, influenza liposomes were, in most cases, able to withstand wall-to-wall deformation, and forces >1 nN were generally required to puncture the influenza envelope, which is similar to viral protein shells. Hence, the choice of a highly flexible lipid envelope may provide as efficient a protection for a viral genome as a stiff protein shell.

摘要

溶酶体、包膜病毒以及突触小泡和分泌小泡都是天然纳米容器(直径≈100nm)的例子,它们专门依赖于脂质双层来保护和交换细胞内的物质。我们应用了主要基于原子力显微镜和有限元建模的方法,这些方法可以精确地研究流感病毒脂质包膜的机械性能。我们用原子力显微镜的探针对由 PR8 流感病毒脂质制成的小而球形的脂质体施加高达 0.2nN 的力,从而导致平均 20%的弹性变形,来探测小脂质体的机械性能。用有限元方法对脂质体变形进行建模,以提取脂质双层的弹性特性。我们发现流感病毒脂质体比凝胶相双层预期的更软,且具有高度的可变形性:与之前关于流感病毒脂质不经历主要相变的建议一致,我们观察到流感病毒脂质体的刚度逐渐且微弱地(在一个数量级内)随温度升高而增加。令人惊讶的是,在大多数情况下,流感病毒脂质体能够承受壁到壁的变形,通常需要超过 1nN 的力才能刺穿流感包膜,这与病毒蛋白壳类似。因此,高度灵活的脂质包膜的选择可能为病毒基因组提供与刚性蛋白壳一样有效的保护。

相似文献

1
Bending and puncturing the influenza lipid envelope.
Biophys J. 2011 Feb 2;100(3):637-645. doi: 10.1016/j.bpj.2010.12.3701.
2
Effect of envelope proteins on the mechanical properties of influenza virus.
J Biol Chem. 2012 Nov 30;287(49):41078-88. doi: 10.1074/jbc.M112.412726. Epub 2012 Oct 9.
4
Formation and finite element analysis of tethered bilayer lipid structures.
Langmuir. 2010 Dec 7;26(23):18199-208. doi: 10.1021/la1021802. Epub 2010 Oct 26.
5
Direct observation of lipid bilayer disruption by poly(amidoamine) dendrimers.
Chem Phys Lipids. 2004 Nov;132(1):3-14. doi: 10.1016/j.chemphyslip.2004.09.001.
6
Mechanical Properties of Membranes Composed of Gel-Phase or Fluid-Phase Phospholipids Probed on Liposomes by Atomic Force Spectroscopy.
Langmuir. 2017 May 30;33(21):5117-5126. doi: 10.1021/acs.langmuir.7b00363. Epub 2017 May 16.
7
Bilayer properties of giant magnetic liposomes formed by cationic pyridine amphiphile and probed by active deformation under magnetic forces.
Eur Phys J E Soft Matter. 2013 Jan;36(1):9. doi: 10.1140/epje/i2013-13009-0. Epub 2013 Jan 30.
8
Experimental Determination of High-Order Bending Elastic Constants of Lipid Bilayers.
J Phys Chem B. 2016 Jun 30;120(25):5655-61. doi: 10.1021/acs.jpcb.6b03983. Epub 2016 Jun 17.
9
A phase of liposomes with entangled tubular vesicles.
Science. 1994 Nov 18;266(5188):1222-5. doi: 10.1126/science.7973704.
10
Atomic force microscopy of nanometric liposome adsorption and nanoscopic membrane domain formation.
Ultramicroscopy. 2003 Oct-Nov;97(1-4):217-27. doi: 10.1016/S0304-3991(03)00046-9.

引用本文的文献

1
Force spectroscopy reveals membrane fluctuations and surface adhesion of extracellular nanovesicles impact their elastic behavior.
Proc Natl Acad Sci U S A. 2025 Apr 22;122(16):e2414174122. doi: 10.1073/pnas.2414174122. Epub 2025 Apr 18.
2
Engineering stress as a motivation for filamentous virus morphology.
Biophys Rep (N Y). 2024 Dec 11;4(4):100181. doi: 10.1016/j.bpr.2024.100181. Epub 2024 Sep 10.
3
Lipoprotein particles exhibit distinct mechanical properties.
J Extracell Biol. 2022 Dec 18;1(12):e68. doi: 10.1002/jex2.68. eCollection 2022 Dec.
4
Extracellular vesicle-matrix interactions.
Nat Rev Mater. 2023 Jun;8(6):390-402. doi: 10.1038/s41578-023-00551-3. Epub 2023 Mar 17.
5
Mechanical tomography of an archaeal lemon-shaped virus reveals membrane-like fluidity of the capsid and liquid nucleoprotein cargo.
Proc Natl Acad Sci U S A. 2023 Oct 17;120(42):e2307717120. doi: 10.1073/pnas.2307717120. Epub 2023 Oct 12.
6
Physical virology: how physics is enabling a better understanding of recent viral invaders.
Biophys Rev. 2023 Jun 17;15(4):611-623. doi: 10.1007/s12551-023-01075-4. eCollection 2023 Aug.
7
Environmental Stability and Transmissibility of Enveloped Viruses at Varied Animate and Inanimate Interfaces.
Environ Health (Wash). 2023 May 30;1(1):15-31. doi: 10.1021/envhealth.3c00005. eCollection 2023 Jul 21.
9
Bidirectionally Regulating Viral and Cellular Ferroptosis with Metastable Iron Sulfide Against Influenza Virus.
Adv Sci (Weinh). 2023 Jun;10(17):e2206869. doi: 10.1002/advs.202206869. Epub 2023 Apr 24.
10
The Ebola virus VP40 matrix layer undergoes endosomal disassembly essential for membrane fusion.
EMBO J. 2023 Jun 1;42(11):e113578. doi: 10.15252/embj.2023113578. Epub 2023 Apr 21.

本文引用的文献

1
Hemagglutinin of influenza virus partitions into the nonraft domain of model membranes.
Biophys J. 2010 Jul 21;99(2):489-98. doi: 10.1016/j.bpj.2010.04.027.
2
Structural organization of a filamentous influenza A virus.
Proc Natl Acad Sci U S A. 2010 Jun 8;107(23):10685-90. doi: 10.1073/pnas.1002123107. Epub 2010 May 24.
3
Scaffold expulsion and genome packaging trigger stabilization of herpes simplex virus capsids.
Proc Natl Acad Sci U S A. 2009 Jun 16;106(24):9673-8. doi: 10.1073/pnas.0901514106. Epub 2009 Jun 1.
4
German Physical Society. Snapshots from the meeting.
Science. 2009 Apr 24;324(5926):453. doi: 10.1126/science.324_453a.
5
Atomic force microscopy: a tool to study the structure, dynamics and stability of liposomal drug delivery systems.
Expert Opin Drug Deliv. 2009 Mar;6(3):305-17. doi: 10.1517/17425240902828312.
6
Survival of influenza virus on banknotes.
Appl Environ Microbiol. 2008 May;74(10):3002-7. doi: 10.1128/AEM.00076-08. Epub 2008 Mar 21.
7
Progressive ordering with decreasing temperature of the phospholipids of influenza virus.
Nat Chem Biol. 2008 Apr;4(4):248-55. doi: 10.1038/nchembio.77. Epub 2008 Mar 2.
8
Internal DNA pressure modifies stability of WT phage.
Proc Natl Acad Sci U S A. 2007 Jun 5;104(23):9603-8. doi: 10.1073/pnas.0703166104. Epub 2007 May 29.
10
Viral capsids: mechanical characteristics, genome packaging and delivery mechanisms.
Cell Mol Life Sci. 2007 Jun;64(12):1484-97. doi: 10.1007/s00018-007-6451-1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验