Schmitz Fabian, Sedaghat Sam
Department of Diagnostic and Interventional Radiology, University Hospital Heidelberg, Im Neuenheimer Feld 420, 69120 Heidelberg, Germany (F.S., S.S.).
Department of Diagnostic and Interventional Radiology, University Hospital Heidelberg, Im Neuenheimer Feld 420, 69120 Heidelberg, Germany (F.S., S.S.).
Acad Radiol. 2025 Jan;32(1):311-315. doi: 10.1016/j.acra.2024.08.035. Epub 2024 Sep 10.
Soft tissue sarcomas (STS) are a heterogeneous group of rare malignant tumors. Tumor grade might be underestimated in biopsy due to intratumoral heterogeneity. This mini-review aims to present the current state of predicting malignancy grades of STS through radiomics, machine learning, and deep learning on magnetic resonance imaging (MRI). Several studies investigated various machine-learning and deep-learning approaches in T2-weighted (w) images, contrast-enhanced (CE) T1w images, and DWI/ADC maps with promising results. Combining semantic imaging features, radiomics features, and deep-learning signatures in machine-learning models has demonstrated superior predictive performances compared to individual feature sources. Furthermore, incorporating features from both tumor volume and peritumor region is beneficial. Especially random forest and support vector machine classifiers, often combined with the least absolute shrinkage and selection operator (LASSO) and/or synthetic minority oversampling technique (SMOTE), did show high area under the curve (AUC) values and accuracies in existing studies.
软组织肉瘤(STS)是一组异质性的罕见恶性肿瘤。由于肿瘤内异质性,活检时肿瘤分级可能被低估。本综述旨在介绍通过磁共振成像(MRI)上的放射组学、机器学习和深度学习预测STS恶性程度分级的现状。多项研究在T2加权(w)图像、对比增强(CE)T1w图像和扩散加权成像/表观扩散系数(DWI/ADC)图中研究了各种机器学习和深度学习方法,取得了有前景的结果。与单个特征源相比,在机器学习模型中结合语义成像特征、放射组学特征和深度学习特征已显示出卓越的预测性能。此外,纳入肿瘤体积和肿瘤周围区域的特征是有益的。特别是随机森林和支持向量机分类器,通常与最小绝对收缩和选择算子(LASSO)和/或合成少数过采样技术(SMOTE)相结合,在现有研究中确实显示出较高的曲线下面积(AUC)值和准确率。