Wenger Samuel R, D'Alessandro Deanna M
School of Chemical and Biomolecular Engineering, Faculty of Engineering, The University of Sydney, Darlington, NSW, 2008, Australia.
School of Chemistry, Faculty of Science, The University of Sydney, Camperdown, NSW, 2006, Australia.
ChemSusChem. 2025 Feb 1;18(3):e202401315. doi: 10.1002/cssc.202401315. Epub 2024 Oct 30.
Direct Air Capture (DAC) is an emerging form of atmospheric carbon dioxide removal. Conventional DAC sorbents utilize swings in temperature and/or pressure, which are energy intensive and hinders large-scale deployment. In this work, we demonstrate a green, aqueous electrochemical DAC system that employs Alizarin Red S (ARS) as an electroactive capturing agent. The system has an estimated minimum theoretical energy requirement of 24.6 kJe/mole of CO, demonstrated reversible electrochemical behavior over 100 cycles and 205 hours, and maintained an average coulombic efficiency of 100 % with an average capacity retention of 99.8 %. With a techno-economic analysis, we highlight the impact of current density and electrode surface area on levelized costs, and we describe a path to lower the cost of DAC below US$500 per tonne of CO.
直接空气捕获(DAC)是一种新兴的大气二氧化碳去除形式。传统的DAC吸附剂利用温度和/或压力的变化,这需要大量能源,阻碍了大规模应用。在这项工作中,我们展示了一种绿色的水性电化学DAC系统,该系统使用茜素红S(ARS)作为电活性捕获剂。该系统估计每摩尔CO的最低理论能量需求为24.6 kJ/e,在100个循环和205小时内表现出可逆的电化学行为,平均库仑效率保持在100%,平均容量保持率为99.8%。通过技术经济分析,我们强调了电流密度和电极表面积对平准化成本的影响,并描述了将DAC成本降低至每吨CO低于500美元的途径。