Suppr超能文献

使用胸部X线摄影深度学习模型筛查患者身份识别错误:一项七名阅片者的研究

Screening Patient Misidentification Errors Using a Deep Learning Model of Chest Radiography: A Seven Reader Study.

作者信息

Kim Kiduk, Cho Kyungjin, Eo Yujeong, Kim Jeeyoung, Yun Jihye, Ahn Yura, Seo Joon Beom, Hong Gil-Sun, Kim Namkug

机构信息

Department of Convergence Medicine, University of Ulsan College of Medicine, Asan Medical Center, 88 Olympic-Ro 43-Gil, Songpa-Gu, Seoul, 05505, Republic of Korea.

Department of Biomedical Engineering, Asan Medical Institute of Convergence Science and Technology, University of Ulsan College of Medicine, Asan Medical Center, 88 Olympic-Ro 43-Gil, Songpa-Gu, Seoul, 05505, Republic of Korea.

出版信息

J Imaging Inform Med. 2025 Apr;38(2):694-702. doi: 10.1007/s10278-024-01245-0. Epub 2024 Sep 11.

Abstract

We aimed to evaluate the ability of deep learning (DL) models to identify patients from a paired chest radiograph (CXR) and compare their performance with that of human experts. In this retrospective study, patient identification DL models were developed using 240,004 CXRs. The models were validated using multiple datasets, namely, internal validation, CheXpert, and Chest ImaGenome (CIG), which include different populations. Model performance was analyzed in terms of disease change status. The performance of the models to identify patients from paired CXRs was compared with three junior radiology residents (group I), two senior radiology residents (group II), and two board-certified expert radiologists (group III). For the reader study, 240 patients (age, 56.617 ± 13.690 years, 113 females, 160 same pairs) were evaluated. A one-sided non-inferiority test was performed with a one-sided margin of 0.05. SimChest, our similarity-based DL model, demonstrated the best patient identification performance across multiple datasets, regardless of disease change status (internal validation [area under the receiver operating characteristic curve range: 0.992-0.999], CheXpert [0.933-0.948], and CIG [0.949-0.951]). The radiologists identified patients from the paired CXRs with a mean accuracy of 0.900 (95% confidence interval: 0.852-0.948), with performance increasing with experience (mean accuracy:group I [0.874], group II [0.904], group III [0.935], and SimChest [0.904]). SimChest achieved non-inferior performance compared to the radiologists (P for non-inferiority: 0.015). The findings of this diagnostic study indicate that DL models can screen for patient misidentification using a pair of CXRs non-inferiorly to human experts.

摘要

我们旨在评估深度学习(DL)模型从配对胸部X光片(CXR)中识别患者的能力,并将其性能与人类专家的性能进行比较。在这项回顾性研究中,使用240,004张胸部X光片开发了患者识别DL模型。这些模型使用多个数据集进行验证,即内部验证、CheXpert和胸部影像基因组(CIG),这些数据集包含不同人群。根据疾病变化状态分析模型性能。将从配对胸部X光片中识别患者的模型性能与三名初级放射科住院医师(第一组)、两名高级放射科住院医师(第二组)和两名获得委员会认证的放射科专家(第三组)进行比较。对于读者研究,评估了240名患者(年龄,56.617±13.690岁,113名女性,160对相同配对)。进行了单侧非劣效性检验,单侧界值为0.05。我们基于相似性的DL模型SimChest在多个数据集中表现出最佳的患者识别性能,无论疾病变化状态如何(内部验证[受试者操作特征曲线下面积范围:0.992 - 0.999]、CheXpert[0.933 - 0.948]和CIG[0.949 - 0.951])。放射科医生从配对胸部X光片中识别患者的平均准确率为0.900(95%置信区间:0.852 - 0.948),性能随着经验增加(平均准确率:第一组[0.874]、第二组[0.904]、第三组[0.935],SimChest[0.904])。与放射科医生相比,SimChest达到了非劣效性能(非劣效性P值:0.015)。这项诊断研究的结果表明,DL模型使用一对胸部X光片筛查患者误识别的能力不低于人类专家。

相似文献

本文引用的文献

3
AI recognition of patient race in medical imaging: a modelling study.人工智能识别医学影像中的患者种族:一项建模研究。
Lancet Digit Health. 2022 Jun;4(6):e406-e414. doi: 10.1016/S2589-7500(22)00063-2. Epub 2022 May 11.
6
Deep Learning to Estimate Biological Age From Chest Radiographs.深度学习从胸部 X 光片中估算生物年龄。
JACC Cardiovasc Imaging. 2021 Nov;14(11):2226-2236. doi: 10.1016/j.jcmg.2021.01.008. Epub 2021 Mar 17.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验