Protein Engineering and Evolution Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Japan.
Department of Plant and Environmental Sciences, Hebrew University of Jerusalem, Jerusalem, Israel.
Nature. 2024 Oct;634(8034):721-728. doi: 10.1038/s41586-024-07924-w. Epub 2024 Sep 11.
SAR11 bacteria are the most abundant microorganisms in the surface ocean and have global biogeochemical importance. To thrive in their competitive oligotrophic environment, these bacteria rely heavily on solute-binding proteins that facilitate uptake of specific substrates via membrane transporters. The functions and properties of these transport proteins are key factors in the assimilation of dissolved organic matter and biogeochemical cycling of nutrients in the ocean, but they have remained largely inaccessible to experimental investigation. Here we performed genome-wide experimental characterization of all solute-binding proteins in a prototypical SAR11 bacterium, revealing specific functions and general trends in their properties that contribute to the success of SAR11 bacteria in oligotrophic environments. We found that the solute-binding proteins of SAR11 bacteria have extremely high binding affinity (dissociation constant >20 pM) and high binding specificity, revealing molecular mechanisms of oligotrophic adaptation. Our functional data have uncovered new carbon sources for SAR11 bacteria and enable accurate biogeographical analysis of SAR11 substrate uptake capabilities throughout the ocean. This study provides a comprehensive view of the substrate uptake capabilities of ubiquitous marine bacteria, providing a necessary foundation for understanding their contribution to assimilation of dissolved organic matter in marine ecosystems.
SAR11 细菌是海洋表面最丰富的微生物,具有全球生物地球化学重要性。为了在竞争激烈的贫营养环境中茁壮成长,这些细菌严重依赖溶质结合蛋白,通过膜转运蛋白促进特定底物的摄取。这些运输蛋白的功能和特性是海洋中溶解有机物同化和营养物质生物地球化学循环的关键因素,但它们在很大程度上仍然无法通过实验研究来了解。在这里,我们对典型的 SAR11 细菌中的所有溶质结合蛋白进行了全基因组实验表征,揭示了它们在性质上的特定功能和一般趋势,这些功能和趋势有助于 SAR11 细菌在贫营养环境中的成功。我们发现,SAR11 细菌的溶质结合蛋白具有极高的结合亲和力(解离常数>20 pM)和高结合特异性,揭示了贫营养适应的分子机制。我们的功能数据揭示了 SAR11 细菌的新碳源,并能够准确分析海洋中 SAR11 底物摄取能力的生物地理分布。这项研究提供了对普遍存在的海洋细菌底物摄取能力的全面了解,为理解它们对海洋生态系统中溶解有机物同化的贡献提供了必要的基础。