Suppr超能文献

SAR11细菌识别磷酸盐的结构和分子基础。

Structural and molecular basis for phosphate recognition by SAR11 bacteria.

作者信息

Zhu Wen-Jing, Wang Chen, Liu Li, Li Jian-Xun, Wang Hou-Qi, Wang Meng-Qi, Cao Hai-Yan, Chen Xiu-Lan, Qin Qi-Long, Zhang Yu-Zhong, Sun Mei-Ling, Wang Peng

机构信息

MOE Key Laboratory of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System and College of Marine Life Sciences, Ocean University of China, Qingdao, China.

Marine Biotechnology Research Center, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China.

出版信息

mBio. 2025 Aug 13:e0165425. doi: 10.1128/mbio.01654-25.

Abstract

Phosphorus is a critical limiting nutrient that constrains the survival, growth, and reproduction of marine microorganisms in nutrient-limited ecosystems. Phosphorus exists in the environment in both organic and inorganic forms, with phosphate being the predominant form of inorganic phosphorus. SAR11 bacteria, a group of oligotrophic marine bacteria, possess high-affinity transporters for limiting nutrients such as phosphate, nitrogen, and organic carbon, enabling them to dominate in nutrient-depleted environments. Despite their ecological significance, the molecular mechanisms underlying phosphate transport and metabolism in SAR11 bacteria remain elusive. Here, we investigated the phosphate transport system in Pelagibacter sp. HTCC7211, a representative SAR11 bacterium, which encodes an ATP-binding cassette-type phosphate transporter, PstSCAB. We heterologously expressed and purified PstS, the substrate-binding component of the transporter, and determined its crystal structure in complex with phosphate to gain insights into its substrate recognition mechanism. Microscale thermophoresis binding assays demonstrated that PstS binds phosphate with high affinity, exhibiting a dissociation constant () of 112 nM. Phylogenetic analysis placed PstS in a distinct branch of previously characterized PstS proteins. Structural analysis further revealed that PstS employs a unique binding site and a distinct hydrogen-bonding network for phosphate recognition and features an expanded substrate-binding cavity, suggesting potential for organic phosphorus binding. The bioinformatic analysis further indicated that PstS-type phosphate-binding proteins are widely distributed among SAR11 bacteria. These findings provide valuable insights into phosphorus acquisition and utilization mechanisms in SAR11 bacteria, enhancing our understanding of their adaptation to nutrient-limited marine environments.IMPORTANCEThis study provides crucial insights into phosphate acquisition in SAR11 bacteria, a key group of oligotrophic microorganisms that thrive in nutrient-limited marine ecosystems. By characterizing the unique structural features of PstS, including its distinct hydrogen-bonding network and expanded substrate-binding cavity, this research sheds light on how SAR11 bacteria adapt to limited phosphorus availability. The discovery that PstS may also accommodate organic phosphorus compounds broadens our understanding of microbial nutrient acquisition. These findings have significant implications for marine biogeochemical cycles and offer new perspectives on the evolution of nutrient transport mechanisms in marine microorganisms.

摘要

磷是一种关键的限制性营养物质,在营养受限的生态系统中,它会限制海洋微生物的生存、生长和繁殖。磷以有机和无机两种形式存在于环境中,其中磷酸盐是无机磷的主要形式。SAR11细菌是一类贫营养海洋细菌,它们拥有针对磷酸盐、氮和有机碳等限制性营养物质的高亲和力转运蛋白,这使得它们能够在营养匮乏的环境中占据主导地位。尽管它们具有重要的生态意义,但SAR11细菌中磷酸盐运输和代谢的分子机制仍然不清楚。在这里,我们研究了Pelagibacter sp. HTCC7211(一种代表性的SAR11细菌)中的磷酸盐运输系统,该细菌编码一种ATP结合盒式磷酸盐转运蛋白PstSCAB。我们异源表达并纯化了该转运蛋白的底物结合成分PstS,并确定了其与磷酸盐结合的晶体结构,以深入了解其底物识别机制。微量热泳结合试验表明,PstS与磷酸盐具有高亲和力结合,解离常数()为112 nM。系统发育分析将PstS置于先前已表征的PstS蛋白的一个独特分支中。结构分析进一步表明,PstS利用一个独特的结合位点和一个不同的氢键网络来识别磷酸盐,并且具有一个扩大的底物结合腔,这表明它具有结合有机磷的潜力。生物信息学分析进一步表明,PstS型磷酸盐结合蛋白广泛分布于SAR11细菌中。这些发现为SAR11细菌获取和利用磷的机制提供了有价值的见解,增进了我们对它们适应营养受限海洋环境的理解。重要性本研究为SAR11细菌获取磷酸盐提供了关键见解,SAR11细菌是在营养受限的海洋生态系统中茁壮成长的一类关键贫营养微生物。通过表征PstS的独特结构特征,包括其独特的氢键网络和扩大的底物结合腔,本研究揭示了SAR11细菌如何适应有限的磷可用性。PstS也可能容纳有机磷化合物这一发现拓宽了我们对微生物营养获取的理解。这些发现对海洋生物地球化学循环具有重要意义,并为海洋微生物营养运输机制的进化提供了新的视角。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验