Suppr超能文献

运用定量方法、多元分析和机器学习模型对地下水质量及风险指标进行综合评估与预测:一项探索性研究。

Comprehensive evaluation and prediction of groundwater quality and risk indices using quantitative approaches, multivariate analysis, and machine learning models: An exploratory study.

作者信息

Gad Mohamed, Gaagai Aissam, Agrama Asmaa A, El-Fiqy Walaa F M, Eid Mohamed Hamdy, Szűcs Péter, Elsayed Salah, Elsherbiny Osama, Khadr Mosaad, Abukhadra Mostafa R, Alfassam Haifa E, Bellucci Stefano, Ibrahim Hekmat

机构信息

Hydrogeology, Evaluation of Natural Resources Department, Environmental Studies and Research Institute, University of Sadat City, Minufiya, 32897, Egypt.

Scientific and Technical Research Center on Arid Regions (CRSTRA), Biskra, 07000, Algeria.

出版信息

Heliyon. 2024 Aug 23;10(17):e36606. doi: 10.1016/j.heliyon.2024.e36606. eCollection 2024 Sep 15.

Abstract

Assessing and predicting quality of groundwater is crucial in managing groundwater availability effectively. In the current study, groundwater quality was thoroughly appraised using various indexing methods, including the drinking water quality index (DWQI), pollution index of heavy metals (HPI), pollution index (PI), metal index (MI), degree of contamination (C), and risk indicators, like hazard quotient (HQ) and total hazard indicator (HI). The assessments were augmented through multivariate analytical techniques, models based on recurrent neural networks (RNNs), and integration of geographic information system (GIS) technology. The analysis measured physicochemical parameters across 48 groundwater wells from El-Menoufia region, revealing distinct water types influenced by ion exchange, rock-water interactions, and silicate weathering. Notably, the groundwater showed elevated levels of certain metals, particularly manganese (Mn) and lead (Pb), exceeding the drinking water limits. The DWQI deemed the bulk of the tested samples suitable for consumption, assigning them to the "good" category, whereas a small number were considered inferior quality. The HPI, MI, and C indices indicated significant pollution in the central study region. The PI revealed that Pb, Mn, and Fe were significant contributors to water pollution, falling between classes IV (strongly affected) and V (seriously affected). HQ and HI analyses identified the central area of the study as particularly prone to metal contamination, signifying a high risk to children via oral and dermal routes and to adults through oral exposure alone (non-carcinogenic risk). The adults had no health risks due to dermal contact. Finally, the RNN simulation model effectively predicted the health and water quality indices in training and testing series. For instance, the RNN model excelled in predicting the DWQI, with three key parameters being crucial. The model demonstrated an excellent fit on the training set, achieving an R of 1.00 with a very low root mean of squared error (RMSE) of 0.01. However, on the testing set, the model's performance slightly decreased, showing an R of 0.96 and an RMSE of 2.73. Regarding HPI, the RNN model performed exceptionally well as the primary predictor, with R values of 1.00 (RMSE = 0.01) and 0.93 (RMSE = 27.35) for the training and testing sets, respectively. This study provides a unique perspective for improving the integration of various techniques to gain a more comprehensive understanding of groundwater quality and its associated health risks, with a strong focus on feature selection strategies to enhance model accuracy and interpretability.

摘要

有效管理地下水可利用量时,评估和预测地下水质量至关重要。在本研究中,使用了多种指标方法对地下水质量进行了全面评估,包括饮用水质量指数(DWQI)、重金属污染指数(HPI)、污染指数(PI)、金属指数(MI)、污染程度(C)以及风险指标,如危害商数(HQ)和总危害指标(HI)。通过多元分析技术、基于循环神经网络(RNN)的模型以及地理信息系统(GIS)技术的整合对评估进行了强化。分析测量了来自米努夫省地区48口地下水井的理化参数,揭示了受离子交换、岩石 - 水相互作用和硅酸盐风化影响的不同水型。值得注意的是,地下水中某些金属含量升高,特别是锰(Mn)和铅(Pb),超过了饮用水限值。DWQI认为大部分测试样品适合饮用,将它们归类为“良好”类别,而少数样品质量较差。HPI、MI和C指数表明研究区域中部存在严重污染。PI显示铅、锰和铁是水污染的重要贡献因素,处于IV类(严重影响)和V类(极度影响)之间。HQ和HI分析确定研究区域中部特别容易受到金属污染,这意味着通过口服和皮肤途径对儿童以及仅通过口服暴露对成年人(非致癌风险)存在高风险。成年人因皮肤接触没有健康风险。最后,RNN模拟模型在训练和测试系列中有效地预测了健康和水质指数。例如,RNN模型在预测DWQI方面表现出色,有三个关键参数至关重要。该模型在训练集上拟合良好,R值为1.00,均方根误差(RMSE)非常低,为0.01。然而,在测试集上,模型性能略有下降,R值为0.96,RMSE为2.73。关于HPI,RNN模型作为主要预测器表现异常出色,训练集和测试集的R值分别为1.00(RMSE = 0.01)和0.93(RMSE = 27.35)。本研究为改进各种技术的整合提供了独特视角,以便更全面地了解地下水质量及其相关健康风险,重点关注特征选择策略以提高模型准确性和可解释性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3aad/11388788/e88a17969537/ga1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验