Bae Seo-Hyeon, Choi Hosam, Lee Jisun, Kang Min-Ho, Ahn Seong-Ho, Lee Yu-Sun, Choi Huijeong, Jo Sohee, Lee Yeeun, Park Hyo-Jung, Lee Seonghyun, Yoon Subin, Roh Gahyun, Cho Seongje, Cho Youngran, Ha Dahyeon, Lee Soo-Yeon, Choi Eun-Jin, Oh Ayoung, Kim Jungmin, Lee Sowon, Hong Jungmin, Lee Nakyung, Lee Minyoung, Park Jungwon, Jeong Dong-Hwa, Lee Kiyoun, Nam Jae-Hwan
Department of Medical and Biological Sciences, The Catholic University of Korea, Bucheon, 14662, Republic of Korea.
Department of Biotechnology, The Catholic University of Korea, Bucheon, 14662, Republic of Korea.
Small. 2025 Feb;21(8):e2405618. doi: 10.1002/smll.202405618. Epub 2024 Sep 12.
Since the coronavirus pandemic, mRNA vaccines have revolutionized the field of vaccinology. Lipid nanoparticles (LNPs) are proposed to enhance mRNA delivery efficiency; however, their design is suboptimal. Here, a rational method for designing LNPs is explored, focusing on the ionizable lipid composition and structural optimization using machine learning (ML) techniques. A total of 213 LNPs are analyzed using random forest regression models trained with 314 features to predict the mRNA expression efficiency. The models, which predict mRNA expression levels post-administration of intradermal injection in mice, identify phenol as the dominant substructure affecting mRNA encapsulation and expression. The specific phospholipids used as components of the LNPs, as well as the N/P ratio and mass ratio, are found to affect the efficacy of mRNA delivery. Structural analysis highlights the impact of the carbon chain length on the encapsulation efficiency and LNP stability. This integrated approach offers a framework for designing advanced LNPs and has the potential to unlock the full potential of mRNA therapeutics.
自新冠疫情以来,信使核糖核酸(mRNA)疫苗彻底改变了疫苗学领域。脂质纳米颗粒(LNPs)被认为可提高mRNA的递送效率;然而,其设计并不理想。在此,探索了一种设计LNPs的合理方法,重点是使用机器学习(ML)技术进行可电离脂质组成和结构优化。使用经过314个特征训练的随机森林回归模型分析了总共213种LNPs,以预测mRNA表达效率。这些模型可预测小鼠皮内注射后mRNA的表达水平,确定苯酚是影响mRNA封装和表达的主要亚结构。发现用作LNPs成分的特定磷脂以及N/P比和质量比会影响mRNA递送的效果。结构分析突出了碳链长度对封装效率和LNP稳定性的影响。这种综合方法为设计先进的LNPs提供了一个框架,并且有潜力释放mRNA疗法的全部潜力。