Suppr超能文献

使用高效分离微流控芯片辅助的超灵敏、稳定、选择性氧化亚铜复合 SERS 生物探针,对肿瘤细胞和血细胞进行精确诊断。

Precise diagnosis of tumor cells and hemocytes using ultrasensitive, stable, selective cuprous oxide composite SERS bioprobes assisted with high-efficiency separation microfluidic chips.

机构信息

Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China.

Ningbo Cixi Institute of Biomedical Engineering, Ningbo, 315201, China.

出版信息

Mater Horiz. 2024 Nov 11;11(22):5752-5767. doi: 10.1039/d4mh00791c.

Abstract

Efficient enrichment and accurate diagnosis of cancer cells from biological samples can guide effective treatment strategies. However, the accessibility and accuracy of rapid identification of tumor cells have been hampered due to the overlap of white blood cells (WBCs) and cancer cells in size. Therefore, a diagnosis system for the identification of tumor cells using reliable surface-enhanced Raman spectroscopy (SERS) bioprobes assisted with high-efficiency microfluidic chips for rapid enrichment of cancer cells was developed. According to this, a homogeneous flower-like CuO@Ag composite with high SERS performance was constructed. It showed a favorable spectral stability of 5.81% and can detect trace alizarin red (10 mol L). Finite-difference time-domain (FDTD) simulation of CuO, Ag and CuO@Ag, decreased the fluorescence lifetime of methylene blue after adsorption on CuO@Ag, and surface defects of CuO observed using a spherical aberration-corrected transmission electron microscope (AC-TEM) demonstrated that the combined effects of electromagnetic enhancement and promoted charge transfer endowed the CuO@Ag with good SERS activity. In addition, the modulation of the absorption properties of flower-like CuO@Ag composites significantly improved electromagnetic enhancement and charge transfer effects at 532 nm, providing a reliable basis for the label-free SERS detection. After the cancer cells in blood were separated by a spiral inertial microfluidic chip (purity >80%), machine learning-assisted linear discriminant analysis (LDA) successfully distinguished three types of cancer cells and WBCs with high accuracy (>90%). In conclusion, this study provides a profound reference for the rational design of SERS probes and the efficient diagnosis of malignant tumors.

摘要

从生物样本中高效富集和准确诊断癌细胞,可以指导有效的治疗策略。然而,由于白细胞 (WBC) 和癌细胞在大小上的重叠,肿瘤细胞的快速识别的便捷性和准确性受到了阻碍。因此,开发了一种使用可靠的表面增强拉曼光谱 (SERS) 生物探针和高效微流控芯片快速富集癌细胞的肿瘤细胞识别诊断系统。

根据这一方案,构建了具有高 SERS 性能的均匀花状 CuO@Ag 复合材料。它表现出良好的光谱稳定性(5.81%),可以检测痕量茜素红(10 mol L)。通过对 CuO、Ag 和 CuO@Ag 的有限差分时间域 (FDTD) 模拟,吸附在 CuO@Ag 上的亚甲基蓝的荧光寿命降低,使用球差校正透射电子显微镜 (AC-TEM) 观察到的 CuO 表面缺陷表明,电磁增强和促进电荷转移的综合效应赋予了 CuO@Ag 良好的 SERS 活性。此外,花状 CuO@Ag 复合材料的吸收特性的调制显著改善了 532nm 处的电磁增强和电荷转移效应,为无标记 SERS 检测提供了可靠的基础。

通过螺旋惯性微流控芯片(纯度>80%)分离血液中的癌细胞后,机器学习辅助线性判别分析(LDA)成功地以高精度(>90%)区分了三种类型的癌细胞和 WBC。

总之,本研究为 SERS 探针的合理设计和恶性肿瘤的高效诊断提供了深刻的参考。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验