Arteaga Cardona Fernando, Madirov Eduard, Popescu Radian, Wang Di, Busko Dmitry, Ectors Dominique, Kübel Christian, Eggeler Yolita M, Arús Bernardo A, Chmyrov Andriy, Bruns Oliver T, Richards Bryce S, Hudry Damien
Karlsruhe Institute of Technology, Institute of Microstructure Technology, Eggenstein-Leopoldshafen 76344, Germany.
Karlsruhe Institute of Technology, Laboratory for Electron Microscopy, Karlsruhe 76131, Germany.
ACS Nano. 2024 Sep 12. doi: 10.1021/acsnano.4c07932.
This article represents the first foray into investigating the consequences of various material combinations on the short-wave infrared (SWIR, 1000-2000 nm) performance of Tm-based core-shell nanocrystals (NCs) above 1600 nm. In total, six different material combinations involving two different types of SWIR-emitting core NCs (α-NaTmF and LiTmF) combined with three different protecting shell materials (α-NaYF, CaF, and LiYF) have been synthesized. All corresponding homo- and heterostructured NCs have been meticulously characterized by powder X-ray diffraction and electron microscopy techniques. The latter revealed that out of the six investigated combinations, only one led to the formation of a true core-shell structure with well-segregated core and shell domains. The direct correlation between the downshifting performance and the spatial localization of Tm ions within the final homo- and heterostructured NCs is established. Interestingly, to achieve the best SWIR performance, the formation of an abrupt interface is not a prerequisite, while the existence of a pure (even thin) protective shell is vital. Remarkably, although all homo- and heterostructured NCs have been synthesized under the exact same experimental conditions, Tm SWIR emission is either fully quenched or highly efficient depending on the type of material combination. The most efficient combination (LiTmF/LiYF) achieved a high photoluminescence quantum yield of 39% for SWIR emission above 1600 nm (excitation power density in the range 0.5-3 W/cm) despite significant intermixing. From now on, highly efficient SWIR-emitting probes with an emission above 1600 nm are within reach to unlock the full potential of SWIR imaging.
本文首次对各种材料组合对基于铥(Tm)的核壳纳米晶体(NCs)在1600nm以上短波红外(SWIR,1000 - 2000nm)性能的影响进行了研究。总共合成了六种不同的材料组合,涉及两种不同类型的发射SWIR的核NCs(α-NaTmF和LiTmF)与三种不同的保护壳材料(α-NaYF、CaF和LiYF)。所有相应的同结构和异结构NCs都通过粉末X射线衍射和电子显微镜技术进行了细致表征。后者表明,在研究的六种组合中,只有一种导致形成了具有良好分离的核域和壳域的真正核壳结构。建立了最终同结构和异结构NCs中Tm离子的向下转换性能与空间定位之间的直接关联。有趣的是,为了实现最佳的SWIR性能,形成突然的界面不是先决条件,而纯(即使很薄)保护壳的存在至关重要。值得注意的是,尽管所有同结构和异结构NCs都是在完全相同的实验条件下合成的,但根据材料组合的类型,Tm的SWIR发射要么完全猝灭,要么非常高效。最有效的组合(LiTmF/LiYF)在1600nm以上的SWIR发射中实现了39%的高光致发光量子产率(激发功率密度在0.5 - 3W/cm范围内),尽管存在明显的混合。从现在起,发射波长在1600nm以上的高效SWIR发射探针已触手可及,以释放SWIR成像的全部潜力。