防止阳离子混合可使基于稀土的核壳纳米晶体在亚15纳米短波红外发射中实现50%的量子产率。
Preventing cation intermixing enables 50% quantum yield in sub-15 nm short-wave infrared-emitting rare-earth based core-shell nanocrystals.
作者信息
Arteaga Cardona Fernando, Jain Noopur, Popescu Radian, Busko Dmitry, Madirov Eduard, Arús Bernardo A, Gerthsen Dagmar, De Backer Annick, Bals Sara, Bruns Oliver T, Chmyrov Andriy, Van Aert Sandra, Richards Bryce S, Hudry Damien
机构信息
Institute of Microstructure Technology, Karlsruhe Institute of Technology, Karlsruhe, Germany.
EMAT, University of Antwerp, Antwerp, Belgium.
出版信息
Nat Commun. 2023 Jul 25;14(1):4462. doi: 10.1038/s41467-023-40031-4.
Short-wave infrared (SWIR) fluorescence could become the new gold standard in optical imaging for biomedical applications due to important advantages such as lack of autofluorescence, weak photon absorption by blood and tissues, and reduced photon scattering coefficient. Therefore, contrary to the visible and NIR regions, tissues become translucent in the SWIR region. Nevertheless, the lack of bright and biocompatible probes is a key challenge that must be overcome to unlock the full potential of SWIR fluorescence. Although rare-earth-based core-shell nanocrystals appeared as promising SWIR probes, they suffer from limited photoluminescence quantum yield (PLQY). The lack of control over the atomic scale organization of such complex materials is one of the main barriers limiting their optical performance. Here, the growth of either homogeneous (α-NaYF) or heterogeneous (CaF) shell domains on optically-active α-NaYF:Yb:Er (with and without Ce co-doping) core nanocrystals is reported. The atomic scale organization can be controlled by preventing cation intermixing only in heterogeneous core-shell nanocrystals with a dramatic impact on the PLQY. The latter reached 50% at 60 mW/cm; one of the highest reported PLQY values for sub-15 nm nanocrystals. The most efficient nanocrystals were utilized for in vivo imaging above 1450 nm.
短波红外(SWIR)荧光由于具有诸如无自发荧光、血液和组织对光子的吸收较弱以及光子散射系数降低等重要优势,有望成为生物医学应用光学成像的新金标准。因此,与可见光和近红外区域不同,在短波红外区域组织会变得半透明。然而,缺乏明亮且生物相容性良好的探针是充分发挥短波红外荧光潜力必须克服的关键挑战。尽管基于稀土的核壳纳米晶体有望成为短波红外探针,但它们的光致发光量子产率(PLQY)有限。对这类复杂材料原子尺度组织缺乏控制是限制其光学性能的主要障碍之一。在此,报道了在光学活性的α-NaYF:Yb:Er(有和没有铈共掺杂)核纳米晶体上生长均匀(α-NaYF)或异质(CaF)壳层域。仅通过防止阳离子在异质核壳纳米晶体中的相互混合,就可以控制原子尺度组织,这对PLQY有显著影响。在60 mW/cm²时,PLQY达到50%;这是报道的亚15纳米纳米晶体中最高的PLQY值之一。最有效的纳米晶体被用于1450 nm以上的体内成像。