Suppr超能文献

基于深度学习模型的黄斑光学相干断层扫描轴向长度预测。

Prediction of Axial Length From Macular Optical Coherence Tomography Using Deep Learning Model.

机构信息

Department of Ophthalmology, Seoul National University Hospital, Seoul, Korea.

Department of Ophthalmology, Seoul National University College of Medicine, Seoul, Korea.

出版信息

Transl Vis Sci Technol. 2024 Sep 3;13(9):14. doi: 10.1167/tvst.13.9.14.

Abstract

PURPOSE

The purpose of this study was to develop a deep learning model for predicting the axial length (AL) of eyes using optical coherence tomography (OCT) images.

METHODS

We retrospectively included patients with AL measurements and OCT images taken within 3 months. We utilized a 5-fold cross-validation with the ResNet-152 architecture, incorporating horizontal OCT images, vertical OCT images, and dual-input images. The mean absolute error (MAE), R-squared (R2), and the percentages of eyes within error ranges of ±1.0, ±2.0, and ±3.0 mm were calculated.

RESULTS

A total of 9064 eyes of 5349 patients (total image number of 18,128) were included. The average AL of the eyes was 24.35 ± 2.03 (range = 20.53-37.07). Utilizing horizontal and vertical OCT images as dual inputs, deep learning models predicted AL with MAE and R2 of 0.592 mm and 0.847 mm, respectively, in the internal test set (1824 eyes of 1070 patients). In the external test set (171 eyes of 123 patients), the deep learning models predicted AL with MAE and R2 of 0.556 mm and 0.663 mm, respectively. Regarding error margins of ±1.0, ±2.0, and ±3.0 mm, the dual-input models showed accuracies of 83.50%, 98.14%, and 99.45%, respectively, in the internal test set, and 85.38%, 99.42%, and 100.00%, respectively, in the external test set.

CONCLUSIONS

A deep learning-based model accurately predicts AL from OCT images. The dual-input model showed the best performance, demonstrating the potential of macular OCT images in AL prediction.

TRANSLATIONAL RELEVANCE

The study provides new insights into the relationship between retinal and choroidal structures and AL elongation using artificial intelligence models.

摘要

目的

本研究旨在开发一种基于深度学习的模型,通过光学相干断层扫描(OCT)图像预测眼轴(AL)长度。

方法

我们回顾性纳入了在 3 个月内进行过 AL 测量和 OCT 图像拍摄的患者。我们使用 ResNet-152 架构进行了 5 折交叉验证,纳入了水平 OCT 图像、垂直 OCT 图像和双输入图像。计算平均绝对误差(MAE)、R²(R2)以及在 ±1.0、±2.0 和 ±3.0mm 误差范围内的眼数百分比。

结果

共纳入了 5349 名患者的 9064 只眼(总图像数为 18128 张)。这些眼的平均 AL 为 24.35±2.03mm(范围为 20.53-37.07mm)。利用水平和垂直 OCT 图像作为双输入,深度学习模型在内部测试集(1070 名患者的 1824 只眼)中预测 AL 的 MAE 和 R2 分别为 0.592mm 和 0.847mm。在外部测试集(123 名患者的 171 只眼)中,深度学习模型预测 AL 的 MAE 和 R2 分别为 0.556mm 和 0.663mm。在 ±1.0、±2.0 和 ±3.0mm 的误差范围内,双输入模型在内部测试集中的准确率分别为 83.50%、98.14%和 99.45%,在外部测试集中的准确率分别为 85.38%、99.42%和 100.00%。

结论

基于深度学习的模型可准确预测 OCT 图像中的 AL。双输入模型表现最佳,表明黄斑 OCT 图像在 AL 预测中具有潜力。

翻译后文本质量评估

  • 译文忠实反映原文的语义。

  • 译文流畅,语法正确。

整体来说,译文质量良好,能够准确传达原文的意思。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/870d/11407480/e2f4cd69a0ee/tvst-13-9-14-f001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验