Hütner Johanna I, Conti Andrea, Kugler David, Mittendorfer Florian, Kresse Georg, Schmid Michael, Diebold Ulrike, Balajka Jan
Institute of Applied Physics, TU Wien, 1040 Vienna, Austria.
Faculty of Physics, University of Vienna, 1090 Vienna, Austria.
Science. 2024 Sep 13;385(6714):1241-1244. doi: 10.1126/science.adq4744. Epub 2024 Sep 12.
Macroscopic properties of materials stem from fundamental atomic-scale details, yet for insulators, resolving surface structures remains a challenge. We imaged the basal (0001) plane of α-aluminum oxide (α-AlO) using noncontact atomic force microscopy with an atomically defined tip apex. The surface formed a complex ([Formula: see text] × [Formula: see text])±9° reconstruction. The lateral positions of the individual oxygen and aluminum surface atoms come directly from experiment; we determined with computational modeling how these connect to the underlying crystal bulk. Before the restructuring, the surface Al atoms assume an unfavorable, threefold planar coordination; the reconstruction allows a rehybridization with subsurface O that leads to a substantial energy gain. The reconstructed surface remains stoichiometric, AlO.
材料的宏观性质源于基本的原子尺度细节,然而对于绝缘体而言,解析其表面结构仍然是一项挑战。我们使用具有原子定义尖端顶点的非接触式原子力显微镜对α-氧化铝(α-AlO)的基面(0001)进行了成像。表面形成了一种复杂的([公式:见正文]×[公式:见正文])±9°重构。单个氧和铝表面原子的横向位置直接来自实验;我们通过计算建模确定了这些原子如何与底层晶体本体相连。在重构之前,表面铝原子呈现出不利的三重平面配位;这种重构允许与次表面氧进行重新杂化,从而带来显著的能量增益。重构后的表面仍保持化学计量比,即AlO。