Suppr超能文献

动态金属-载体相互作用决定了铜纳米颗粒在氧化铝表面的烧结。

Dynamic Metal-Support Interaction Dictates Cu Nanoparticle Sintering on AlO Surfaces.

作者信息

Xu Jiayan, Das Shreeja, Pathak Amar Deep, Patra Abhirup, Shetty Sharan, Hohl Detlef, Car Roberto

机构信息

Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States.

Shell India Markets Pvt., Ltd., Mahadeva Kodigehalli, Bengaluru 562149, Karnataka, India.

出版信息

ACS Nano. 2025 Aug 19;19(32):29242-29254. doi: 10.1021/acsnano.5c04622. Epub 2025 Aug 8.

Abstract

Nanoparticle sintering remains a critical challenge in heterogeneous catalysis. In this work, we present a unified deep potential (DP) model based on the Perdew-Burke-Ernzerhof approximation of density functional theory for Cu nanoparticles on three AlO surfaces (γ-AlO(100), γ-AlO(110), and α-AlO(0001)). Using DP-accelerated simulations, we reveal that the nanoparticle size-mobility relationship strongly depends on the supporting surface. The diffusion of nanoparticles on the two γ-AlO surfaces is almost independent of the size of the nanoparticle, while the diffusion on α-AlO(0001) decreases rapidly with increasing size. Interestingly, nanoparticles with fewer than 55 atoms diffuse several times faster on α-AlO(0001) than on γ-AlO(100) at 800 K while expected to be more sluggish based on their larger binding energy at 0 K. The diffusion on α-AlO(0001) is facilitated by dynamic metal-support interaction (MSI), where Al atoms move out of the surface plane to optimize contact with the nanoparticle and relax back to the plane as the nanoparticle moves away. In contrast, the MSI on γ-AlO(100) and on γ-AlO(110) is dominated by more stable and directional Cu-O bonds, consistent with the limited diffusion observed on these surfaces. Our extended MD simulations provide insight into the sintering processes, showing that the dispersity of the nanoparticles strongly influences the coalescence driven by nanoparticle diffusion. We observed that the coalescence of Cu nanoparticles on α-AlO(0001) can occur in a short time (10 ns) at 800 K even with an initial internanoparticle distance increased to 3 nm, while the coalescence on the two γ-AlO surfaces are inhibited significantly by increasing the initial internanoparticle distance. These findings demonstrate that the dynamics of the supporting surface is crucial to understanding the sintering mechanism and offer guidance for designing sinter-resistant catalysts by engineering the support morphology.

摘要

纳米颗粒烧结仍然是多相催化中的一个关键挑战。在这项工作中,我们基于密度泛函理论的Perdew-Burke-Ernzerhof近似,为三种AlO表面(γ-AlO(100)、γ-AlO(110)和α-AlO(0001))上的铜纳米颗粒提出了一个统一的深度势(DP)模型。通过DP加速模拟,我们发现纳米颗粒尺寸-迁移率关系强烈依赖于支撑表面。纳米颗粒在两个γ-AlO表面上的扩散几乎与纳米颗粒的尺寸无关,而在α-AlO(0001)上的扩散随着尺寸的增加而迅速降低。有趣的是,在800 K时,原子数少于55个的纳米颗粒在α-AlO(0001)上的扩散速度比在γ-AlO(100)上快几倍,而基于它们在0 K时更大的结合能,预计其扩散速度会更慢。α-AlO(0001)上的扩散通过动态金属-载体相互作用(MSI)得到促进,其中Al原子移出表面平面以优化与纳米颗粒的接触,并在纳米颗粒移开时松弛回到平面。相比之下,γ-AlO(100)和γ-AlO(110)上的MSI由更稳定和定向的Cu-O键主导,这与在这些表面上观察到的有限扩散一致。我们扩展的分子动力学模拟深入了解了烧结过程,表明纳米颗粒的分散性强烈影响由纳米颗粒扩散驱动的心合。我们观察到,即使初始纳米颗粒间距离增加到3 nm,在800 K时,α-AlO(0001)上的铜纳米颗粒的心合也能在短时间(10 ns)内发生,而在两个γ-AlO表面上,通过增加初始纳米颗粒间距离,心合受到显著抑制。这些发现表明,支撑表面的动力学对于理解烧结机制至关重要,并为通过设计载体形态来设计抗烧结催化剂提供了指导。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d921/12369016/b8148111f169/nn5c04622_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验