Suppr超能文献

基于发作间期头皮 EEG 功能连接的婴儿癫痫性痉挛综合征预测模型。

Predictive modeling based on functional connectivity of interictal scalp EEG for infantile epileptic spasms syndrome.

机构信息

Division of Child Neurology, Institute of Neurological Sciences, Faculty of Medicine, Tottori University, 86 Nishi-cho, Yonago 683-8503, Japan.

Department of Medical Technology, Kagawa Prefectural University of Health Sciences, 281-1 Mure-cho, Takamatsu 761-0123, Japan.

出版信息

Clin Neurophysiol. 2024 Nov;167:37-48. doi: 10.1016/j.clinph.2024.08.016. Epub 2024 Aug 30.

Abstract

OBJECTIVE

This study aims to delineate the electrophysiological variances between patients with infantile epileptic spasms syndrome (IESS) and healthy controls and to devise a predictive model for long-term seizure outcomes.

METHODS

The cohort consisted of 30 individuals in the seizure-free group, 23 in the seizure-residual group, and 20 in the control group. We conducted a comprehensive analysis of pretreatment electroencephalography, including the relative power spectrum (rPS), weighted phase-lag index (wPLI), and network metrics. Follow-up EEGs at 2 years of age were also analyzed to elucidate physiological changes among groups.

RESULTS

Infants in the seizure-residual group exhibited increased rPS in theta and alpha bands at IESS onset compared to the other groups (all p < 0.0001). The control group showed higher rPS in fast frequency bands, indicating potentially enhanced cognitive function. The seizure-free group presented increased wPLI across all frequency bands (all p < 0.0001). Our predictive model utilizing wPLI anticipated long-term outcomes at IESS onset (area under the curve 0.75).

CONCLUSION

Our findings demonstrated an initial "hypersynchronous state" in the seizure-free group, which was ameliorated following successful treatment.

SIGNIFICANCE

This study provides a predictive model utilizing functional connectivity and insights into the diverse electrophysiology observed among outcome groups of IESS.

摘要

目的

本研究旨在描绘婴儿痉挛症(IESS)患者与健康对照组之间的电生理差异,并制定一种用于预测长期癫痫发作结局的模型。

方法

该队列包括无发作组 30 例、残留发作组 23 例和对照组 20 例。我们对治疗前的脑电图进行了全面分析,包括相对功率谱(rPS)、加权相位滞后指数(wPLI)和网络指标。还对 2 岁时的随访 EEG 进行了分析,以阐明组间的生理变化。

结果

与其他组相比,残留发作组在 IESS 发作时的θ和α频段的 rPS 增加(均 p<0.0001)。对照组在快频段的 rPS 较高,表明可能具有增强的认知功能。无发作组在所有频段的 wPLI 均增加(均 p<0.0001)。我们的 wPLI 预测模型在 IESS 发作时预测了长期结局(曲线下面积 0.75)。

结论

我们的研究结果表明,无发作组在初始时表现出一种“过度同步状态”,这种状态在成功治疗后得到改善。

意义

本研究提供了一种利用功能连接的预测模型,并深入了解了 IESS 不同结局组观察到的多样化电生理学。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验