Suppr超能文献

用于高性能锂氧电池的稳健氧吸附剂介导的氧氧化还原反应。

Robust oxygen adsorbent mediated oxygen redox reactions for high performance lithium-oxygen battery.

作者信息

Du Dayue, Liu Pengfei, Tian Guilei, Xu Haoyang, Wang Xinxiang, Liu Sheng, Fan Fengxia, Wang Shuhan, Wang Chuan, Zeng Chenrui, Shu Chaozhu

机构信息

College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, 1#, Dongsanlu, Erxianqiao, Chengdu 610059, Sichuan, China; State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu 610065, China.

College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, 1#, Dongsanlu, Erxianqiao, Chengdu 610059, Sichuan, China.

出版信息

J Colloid Interface Sci. 2025 Jan 15;678(Pt B):570-577. doi: 10.1016/j.jcis.2024.09.042. Epub 2024 Sep 7.

Abstract

Lithium-oxygen batteries (LOBs) have been widely studied because of their ultra-high energy density (∼3500 Wh kg). However, the reversibility and stability of LOBs are greatly limited by the sluggish kinetics of oxygen reduction/evolution reactions (ORR/OER) and severely parasitic reactions on oxygen electrodes. Electrolyte in LOBs plays an important role in the transport of reactive oxygen species and Li, which greatly affects the kinetics and reversibility of the charging and discharging processes of batteries. In this work, perfluorooctane (PFO) is used as the additive in 1.0 M LiTFSI/TEGDEM electrolyte for LOBs to regulate the kinetics of oxygen electrode reactions. Due to the strong adsorption ability of PE toward oxygen, the oxygen concentration inside the electrolyte is greatly increased after the addition of PE. In addition, the PE-added electrolyte also exhibits superior electrochemical stability and is capable of triggering solution-mediated LiO growth pathway during the discharge process of the LOBs. Therefore, with the increased oxygen concentration and the optimized electrode/electrolyte interface, the ORR/OER kinetics on the oxygen electrode is significantly promoted, which enables the LOBs with excellent energy efficiency and cycling life. This work provides a new idea for the design of oxygen-rich and high-performance electrolyte for lithium-oxygen batteries.

摘要

锂氧电池(LOBs)因其超高的能量密度(约3500 Wh kg)而受到广泛研究。然而,氧还原/析出反应(ORR/OER)的缓慢动力学以及氧电极上严重的寄生反应极大地限制了锂氧电池的可逆性和稳定性。锂氧电池中的电解质在活性氧物种和锂的传输中起着重要作用,这极大地影响了电池充放电过程的动力学和可逆性。在这项工作中,全氟辛烷(PFO)被用作1.0 M LiTFSI/TEGDEM锂氧电池电解质的添加剂,以调节氧电极反应的动力学。由于PFO对氧具有很强的吸附能力,添加PFO后电解质内部的氧浓度大大增加。此外,添加PFO的电解质还表现出优异的电化学稳定性,并且能够在锂氧电池的放电过程中触发溶液介导的LiO生长途径。因此,随着氧浓度的增加和电极/电解质界面的优化,氧电极上的ORR/OER动力学得到显著促进,这使得锂氧电池具有优异的能量效率和循环寿命。这项工作为锂氧电池富氧和高性能电解质的设计提供了新思路。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验