Suppr超能文献

自供电应变传感装置及其无线传输:基于 DIW 打印的具有拉伸和自修复性能的导电水凝胶电极。

Self-powered strain sensing devices with wireless transmission: DIW-printed conductive hydrogel electrodes featuring stretchable and self-healing properties.

机构信息

College of Mechanical and Electrical Engineering, Qingdao University, Qingdao 266071, China; School of Chemical Engineering, Konkuk University, Seoul 05029, Republic of Korea.

College of Mechanical and Electrical Engineering, Qingdao University, Qingdao 266071, China.

出版信息

J Colloid Interface Sci. 2025 Jan 15;678(Pt B):588-598. doi: 10.1016/j.jcis.2024.08.262. Epub 2024 Sep 10.

Abstract

With rapid advancements in health and human-computer interaction, wearable electronic skins (e-skins) designed for application on the human body provide a platform for real-time detection of physiological signals. Wearable strain sensors, integral functional units within e-skins, can be integrated with Internet of Things (IoT) technology to broaden the applications for human body monitoring. A significant challenge lies in the reliance of most existing wearable strain sensors on rigid external power supplies, limiting their practical flexibility. In this study, we present an innovative strategy to fabricate glutaraldehyde (GA)-poly(vinyl alcohol) (PVA)/cellulose nanocrystals (CNC)/Poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) conductive hydrogels through multiple hydrogen bonding systems. Combining the advantageous rheological properties of the precursor solution and the high specific surface area after freeze-thaw cycling, we have created a self-powered sensing system prepared by large-area printing using direct ink writing (DIW) printing. The resulting conductive hydrogel exhibits commendable mechanical properties (411 KPa), impressive stretchability (580 %), and robust self-healing capabilities (>98.3 %). The strain sensor, derived from the conductive hydrogel, demonstrates a gauge factor (GF) of 2.5 within a stretching range of 0-580 %. Additionally, the resultant supercapacitor displays a peak energy density of 0.131 mWh/cm at a power density of 3.6 mW/cm. Benefiting from its elevated strain response and remarkable power density features, this self-powered strain sensing system enables the real-time monitoring of human joint motion. The incorporation of a 5G transmission module enhances its capabilities for remote data monitoring, thereby contributing to the progress of wireless tracking technologies for self-powered electronic skin.

摘要

随着健康和人机交互技术的快速发展,应用于人体的可穿戴电子皮肤(e-skins)为实时检测生理信号提供了平台。可穿戴应变传感器是 e-skins 的基本功能单元,与物联网(IoT)技术相结合,可以拓宽人体监测的应用。一个重大挑战在于,大多数现有的可穿戴应变传感器依赖于刚性外部电源,限制了其实用的灵活性。在本研究中,我们提出了一种通过多重氢键系统制备戊二醛(GA)-聚乙烯醇(PVA)/纤维素纳米晶体(CNC)/聚(3,4-亚乙基二氧噻吩):聚(苯乙烯磺酸盐)(PEDOT:PSS)导电水凝胶的创新策略。结合前体溶液的有利流变性能和冷冻-解冻循环后的高比表面积,我们使用直接墨水书写(DIW)打印制备了大面积印刷的自供电传感系统。所得导电水凝胶具有令人瞩目的机械性能(411 KPa)、出色的拉伸性(580%)和强大的自修复能力(>98.3%)。由导电水凝胶衍生出的应变传感器在 0-580%的拉伸范围内表现出 2.5 的应变系数(GF)。此外,所得超级电容器在 3.6 mW/cm 的功率密度下显示出 0.131 mWh/cm 的峰值能量密度。得益于其升高的应变响应和显著的功率密度特性,这种自供电应变传感系统能够实时监测人体关节运动。5G 传输模块的加入增强了其远程数据监测能力,从而推动了自供电电子皮肤的无线跟踪技术的发展。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验