Suppr超能文献

核壳结构Ru@CoP协同催化剂作为锂硫电池中多硫化物吸附-催化转化介质,具有增强的氧化还原动力学。

Core-shell Ru@CoP synergistic catalyst as polysulfides adsorption-catalytic conversion mediator with enhanced redox kinetics in lithium-sulfur batteries.

作者信息

Xia Peng, Peng Xiaoli, Yuan Long, Li Shilan, Jing Shengdong, Lu Shengjun, Zhang Yufei, Fan Haosen

机构信息

College of Materials Science and Metallurgy Engineering, Guizhou University, Guiyang 550025, China; School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China.

College of Materials Science and Metallurgy Engineering, Guizhou University, Guiyang 550025, China.

出版信息

J Colloid Interface Sci. 2025 Jan 15;678(Pt B):619-629. doi: 10.1016/j.jcis.2024.09.072. Epub 2024 Sep 11.

Abstract

Lithium-sulfur batteries (LSBs) have emerged as the research hotspot due to their compelling merits, including high specific capacity (1675 mAh g1), theoretical energy density (2600 Wh kg1), environmental friendliness, and economic advantages. However, challenges still exist for further application due to their inherent issues such as the natural insulation, shuttle effect, and volume expansion of sulfur cathode during the continuous cycle processes. These factors obstruct the lithium ions (Li) transfer process and sulfur utilization, resulting in significant impedance and inducing inferior battery performance. Herein, the core-shell nanocube anchoring ruthenium atoms and dicobalt phosphate (Ru@CoP@NC) were fabricated as the effective catalyst and inhibited barrier for LSBs. On the one hand, the core-shell structure offers numerous channels to expedite Li diffusion. On the other hand, ruthenium (Ru) and dicobalt phosphate (CoP) active sites facilitate the chemical capture of lithium polysulfides (LiPSs), accelerating sluggish kinetics. Ru@CoP@NC modified cells not only exhibited a high initial specific capacity (1609.35 mAh g) at 0.5C and enduring stability with high specific capacity retention of 906.60 mAh g at 0.5C after 400 cycles but also possessed low capacity attenuation rate of 0.07 % per cycle after 600 cycles (1C, Sulfur loading: 1.2 mg). Interestingly, the modified cells demonstrated a high specific capacity and long-cycle stability with high sulfur loading (from 1.984 to 3.137 mg), which provides a promising research approach for high-performance LSBs.

摘要

锂硫电池(LSBs)因其令人瞩目的优点,包括高比容量(1675 mAh g1)、理论能量密度(2600 Wh kg1)、环境友好性和经济优势,已成为研究热点。然而,由于其固有问题,如天然绝缘性、穿梭效应以及硫阴极在连续循环过程中的体积膨胀,其进一步应用仍面临挑战。这些因素阻碍了锂离子(Li)的传输过程和硫的利用,导致显著的阻抗并引发电池性能不佳。在此,制备了锚定钌原子和磷酸二钴的核壳纳米立方体(Ru@CoP@NC)作为锂硫电池的有效催化剂和抑制屏障。一方面,核壳结构提供了众多通道以加速锂的扩散。另一方面,钌(Ru)和磷酸二钴(CoP)活性位点促进了多硫化锂(LiPSs)的化学捕获,加速了缓慢的动力学过程。Ru@CoP@NC修饰的电池不仅在0.5C时表现出高初始比容量(1609.35 mAh g),并在400次循环后在0.5C时具有906.60 mAh g的高比容量保持率的持久稳定性,而且在600次循环后(1C,硫负载量:1.2 mg)每循环的容量衰减率低至0.07%。有趣的是,修饰后的电池在高硫负载量(从1.984到3.137 mg)下表现出高比容量和长循环稳定性,这为高性能锂硫电池提供了一种有前景的研究方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验