Suppr超能文献

用于组织病理学的稳健图像分割和合成流水线。

A robust image segmentation and synthesis pipeline for histopathology.

机构信息

Department of Computer Engineering, Bogazici University, Istanbul, Turkey; Department of Computer Science, FAST-NUCES, Lahore, Pakistan.

Computer Science Department, Oxford University, England, United Kingdom.

出版信息

Med Image Anal. 2025 Jan;99:103344. doi: 10.1016/j.media.2024.103344. Epub 2024 Sep 11.

Abstract

Significant diagnostic variability between and within observers persists in pathology, despite the fact that digital slide images provide the ability to measure and quantify features much more precisely compared to conventional methods. Automated and accurate segmentation of cancerous cell and tissue regions can streamline the diagnostic process, providing insights into the cancer progression, and helping experts decide on the most effective treatment. Here, we evaluate the performance of the proposed PathoSeg model, with an architecture comprising of a modified HRNet encoder and a UNet++ decoder integrated with a CBAM block to utilize attention mechanism for an improved segmentation capability. We demonstrate that PathoSeg outperforms the current state-of-the-art (SOTA) networks in both quantitative and qualitative assessment of instance and semantic segmentation. Notably, we leverage the use of synthetic data generated by PathopixGAN, which effectively addresses the data imbalance problem commonly encountered in histopathology datasets, further improving the performance of PathoSeg. It utilizes spatially adaptive normalization within a generative and discriminative mechanism to synthesize diverse histopathological environments dictated through semantic information passed through pixel-level annotated Ground Truth semantic masks.Besides, we contribute to the research community by providing an in-house dataset that includes semantically segmented masks for breast carcinoma tubules (BCT), micro/macrovesicular steatosis of the liver (MSL), and prostate carcinoma glands (PCG). In the first part of the dataset, we have a total of 14 whole slide images from 13 patients' liver, with fat cell segmented masks, totaling 951 masks of size 512 × 512 pixels. In the second part, it includes 17 whole slide images from 13 patients with prostate carcinoma gland segmentation masks, amounting to 30,000 masks of size 512 × 512 pixels. In the third part, the dataset contains 51 whole slides from 36 patients, with breast carcinoma tubule masks totaling 30,000 masks of size 512 × 512 pixels. To ensure transparency and encourage further research, we will make this dataset publicly available for non-commercial and academic purposes. To facilitate reproducibility and encourage further research, we will also make our code and pre-trained models publicly available at https://github.com/DeepMIALab/PathoSeg.

摘要

尽管数字切片图像提供了比传统方法更精确地测量和量化特征的能力,但病理学中观察者之间和观察者内部仍然存在显著的诊断差异。癌症细胞和组织区域的自动和准确分割可以简化诊断过程,深入了解癌症的进展,并帮助专家决定最有效的治疗方法。在这里,我们评估了所提出的 PathoSeg 模型的性能,该模型的架构包括一个修改后的 HRNet 编码器和一个与 CBAM 块集成的 UNet++解码器,以利用注意力机制提高分割能力。我们证明,PathoSeg 在实例和语义分割的定量和定性评估方面都优于当前的最先进(SOTA)网络。值得注意的是,我们利用由 PathopixGAN 生成的合成数据来解决组织病理学数据集中常见的数据不平衡问题,进一步提高了 PathoSeg 的性能。它利用空间自适应归一化在生成和判别机制内,根据通过像素级注释的 Ground Truth 语义掩模传递的语义信息,合成多样化的组织病理学环境。此外,我们通过提供一个内部数据集为研究社区做出贡献,该数据集包括乳腺癌管(BCT)、肝微/大泡性脂肪变性(MSL)和前列腺癌腺体(PCG)的语义分割掩模。在数据集的第一部分,我们有来自 13 位患者肝脏的总共 14 张全幻灯片图像,带有脂肪细胞分割掩模,总计有 951 个大小为 512x512 像素的掩模。在第二部分,它包括来自 13 位前列腺癌腺体分割患者的 17 张全幻灯片图像,总计有 30000 个大小为 512x512 像素的掩模。在第三部分,数据集包含来自 36 位患者的 51 张全幻灯片,带有乳腺癌管掩模,总计有 30000 个大小为 512x512 像素的掩模。为了确保透明度并鼓励进一步的研究,我们将以非商业和学术目的公开此数据集。为了促进可重复性并鼓励进一步的研究,我们还将在 https://github.com/DeepMIALab/PathoSeg 上公开我们的代码和预训练模型。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验