Suppr超能文献

行人碰撞重建中的固有不确定性:证据变异性如何影响头部运动学和损伤预测。

Inherent uncertainty in pedestrian collision reconstruction: How evidence variability affects head kinematics and injury prediction.

机构信息

HEAD Lab, Dyson School of Design Engineering, Imperial College London, London, SW7 2AZ, United Kingdom.

Transport Research Laboratory Ltd., Crowthorne House, Nine Mile Ride, Wokingham, RG40 3GA, United Kingdom.

出版信息

Accid Anal Prev. 2024 Dec;208:107726. doi: 10.1016/j.aap.2024.107726. Epub 2024 Sep 11.

Abstract

Reconstructing individual cases from real-world collision data is used as a tool to better understand injury biomechanics and determine injury thresholds. However, real-world data tends to have inherent uncertainty within parameters, such as ranges of impact speed, pre-impact pedestrian stance or pedestrian anthropometric characteristics. The implications of this input parameter uncertainty on the conclusions made from case reconstruction about injury biomechanics and risk is not well investigated, with a 'best-fit' approach more frequently adopted, leaving uncertainty unexplored. This study explores the implications of uncertain parameters in real-world data on the biomechanical kinematic metrics related to head injury risk in reconstructed real-world pedestrian-car collisions. We selected six pedestrian-car cases involving seven pedestrians from the highly detailed GB Road Accident In-Depth Studies (RAIDS) database. The collisions were reconstructed from the images, damage measurements and dynamics available in RAIDS. For each case, we varied input parameters within uncertain ranges and report the range of head kinematic metrics from each case. This includes variations of reconstructed collision scenarios that fits within the constraints of the available evidence. We used a combination of multibody and finite element modelling in Madymo to test whether the effect of input data uncertainty is the same on the initial head-vehicle and latter head-ground impact phase. Finally, we assessed whether the predicted range of head kinematics correctly predicted the injuries sustained by the pedestrian. Varying the inputs resulted in a range of output head kinematic parameters. Real-world evidence such as CCTV footage enabled predicted simulated values to be further constrained, by ruling out unrealistic scenarios which do not fit the available evidence. We found that input data uncertainty had different implications for the initial head-vehicle and latter head-ground impact phase. There was a narrower distribution of kinematics associated with the head-vehicle impact (initial 400 ms of the collision) than in the latter head-ground impact. The mean head-vehicle kinematics were able to correctly predict the presence or absence of both subdural haematoma (using peak rotational acceleration) and skull vault fracture (using peak contact force) in all pedestrians presented. This study helps increase our understanding of the effects of uncertain parameters on head kinematics in pedestrian-car collision reconstructions. Extending this work to a broad range of pedestrian-vehicle collision reconstructions spanning broad population demographics will improve our understanding of injury mechanisms and risk, leading to more robust design of injury prevention measures.

摘要

从现实世界中的碰撞数据中重建个体案例被用作一种工具,以更好地了解损伤生物力学并确定损伤阈值。然而,现实世界的数据在参数内往往存在固有不确定性,例如冲击速度范围、碰撞前行人姿势或行人人体测量特征。输入参数不确定性对从案例重建中得出的关于损伤生物力学和风险的结论的影响尚未得到很好的研究,通常采用“最佳拟合”方法,而未探索不确定性。本研究探讨了现实世界数据中不确定参数对重建的现实世界行人和汽车碰撞中与头部受伤风险相关的生物力学运动学指标的影响。我们从高度详细的 GB 道路事故深入研究(RAIDS)数据库中选择了六个涉及七个行人的行人和汽车碰撞案例。使用 RAIDS 中的图像、损坏测量值和动力学信息对碰撞进行了重建。对于每个案例,我们在不确定范围内改变输入参数,并报告每个案例的头部运动学指标范围。这包括符合可用证据约束的重建碰撞场景的变化。我们在 Madymo 中使用多体和有限元建模的组合来测试输入数据不确定性对初始头部-车辆和后来的头部-地面碰撞阶段的影响是否相同。最后,我们评估了头部运动学的预测范围是否正确预测了行人所受的伤害。改变输入会导致输出头部运动学参数的范围。闭路电视录像等现实世界的证据使预测模拟值受到进一步限制,排除了不符合可用证据的不现实场景。我们发现输入数据不确定性对初始头部-车辆和后来的头部-地面碰撞阶段有不同的影响。与初始头部-车辆碰撞(碰撞的最初 400 毫秒)相比,头部-地面碰撞的运动学分布范围更窄。头部-车辆运动学的平均值能够正确预测所有呈现的行人的硬膜下血肿(使用峰值旋转加速度)和颅骨穹窿骨折(使用峰值接触力)的存在或不存在。这项研究有助于提高我们对行人汽车碰撞重建中不确定参数对头部运动学影响的理解。将这项工作扩展到涵盖广泛人口统计学的广泛行人-车辆碰撞重建范围将提高我们对伤害机制和风险的理解,从而导致更有效的伤害预防措施设计。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验