Suppr超能文献

CRISPR-Cas 系统在人类细菌性疾病中的研究进展。

Advances in CRISPR-Cas systems for human bacterial disease.

机构信息

Department of Biochemistry, Sri Venkateswara College, University of Delhi, New Delhi, India.

Department of Biosciences and Biomedical Engineering, Indian Institute of Technology, Indore, India.

出版信息

Prog Mol Biol Transl Sci. 2024;208:19-41. doi: 10.1016/bs.pmbts.2024.07.013. Epub 2024 Aug 21.

Abstract

Prokaryotic adaptive immune systems called CRISPR-Cas systems have transformed genome editing by allowing for precise genetic alterations through targeted DNA cleavage. This system comprises CRISPR-associated genes and repeat-spacer arrays, which generate RNA molecules that guide the cleavage of invading genetic material. CRISPR-Cas is classified into Class 1 (multi-subunit effectors) and Class 2 (single multi-domain effectors). Its applications span combating antimicrobial resistance (AMR), targeting antibiotic resistance genes (ARGs), resensitizing bacteria to antibiotics, and preventing horizontal gene transfer (HGT). CRISPR-Cas3, for example, effectively degrades plasmids carrying resistance genes, providing a precise method to disarm bacteria. In the context of ESKAPE pathogens, CRISPR technology can resensitize bacteria to antibiotics by targeting specific resistance genes. Furthermore, in tuberculosis (TB) research, CRISPR-based tools enhance diagnostic accuracy and facilitate precise genetic modifications for studying Mycobacterium tuberculosis. CRISPR-based diagnostics, leveraging Cas endonucleases' collateral cleavage activity, offer highly sensitive pathogen detection. These advancements underscore CRISPR's transformative potential in addressing AMR and enhancing infectious disease management.

摘要

原核生物适应性免疫系统称为 CRISPR-Cas 系统,通过靶向 DNA 切割实现精确的遗传改变,从而改变了基因组编辑。该系统由 CRISPR 相关基因和重复间隔区阵列组成,可生成引导入侵遗传物质切割的 RNA 分子。CRISPR-Cas 分为 1 类(多亚基效应物)和 2 类(单多结构域效应物)。其应用涵盖了对抗抗菌药物耐药性(AMR)、靶向抗生素耐药基因(ARGs)、使细菌重新对抗生素敏感以及防止水平基因转移(HGT)。例如,CRISPR-Cas3 可有效降解携带耐药基因的质粒,为细菌的武器化提供了一种精确的方法。在 ESKAPE 病原体的背景下,CRISPR 技术可以通过靶向特定的耐药基因使细菌重新对抗生素敏感。此外,在结核病(TB)研究中,基于 CRISPR 的工具可提高诊断准确性,并促进研究结核分枝杆菌的精确遗传修饰。基于 CRISPR 的诊断利用 Cas 内切酶的旁切活性,提供了高度敏感的病原体检测。这些进展突显了 CRISPR 在应对 AMR 和加强传染病管理方面的变革潜力。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验