Department of Chemical Engineering, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, PR China.
ACS Synth Biol. 2024 Oct 18;13(10):3378-3388. doi: 10.1021/acssynbio.4c00464. Epub 2024 Sep 12.
l-Pipecolic acid (L-PA), an essential chiral cyclic nonprotein amino acid, is gaining prominence in the food and pharmaceutical sectors due to its wide-ranging biological and pharmacological properties. Historically, L-PA has been synthesized chemically for commercial purposes. This study introduces a novel and efficient microbial production method for L-PA using engineered strain BY4743. Initially, an optimized biosynthetic pathway was constructed within , converting glucose to L-PA with a yield of 0.60 g/L in a 250 mL shake flask . Subsequently, a multifaceted engineering strategy was implemented to enhance L-PA production: substrate-enzyme affinity modification, global transcription machinery engineering modification, and Kozak sequence optimization for enhanced L-PA production. Approaches above led to an impressive 8.6-fold increase in L-PA yield, reaching 5.47 g/L in shake flask cultures. Further scaling up in a 5 L fed-batch fermenter achieved a remarkable L-PA concentration of 74.54 g/L. This research offers innovative insights into the industrial-scale production of L-PA.
L-哌啶酸(L-PA)是一种重要的手性环状非蛋白氨基酸,由于其广泛的生物学和药理学特性,在食品和制药领域越来越受到关注。历史上,L-PA 是通过化学合成方法用于商业目的的。本研究采用工程菌株 BY4743 介绍了一种新型高效的微生物生产 L-PA 的方法。最初,在 250 mL 摇瓶中构建了一个优化的生物合成途径,将葡萄糖转化为 L-PA,产率为 0.60 g/L。随后,实施了一种多方面的工程策略来提高 L-PA 的产量:底物-酶亲和力修饰、全局转录机制工程修饰和 Kozak 序列优化,以提高 L-PA 的产量。这些方法使 L-PA 的产量显著提高了 8.6 倍,在摇瓶培养中达到 5.47 g/L。在 5 L 补料分批发酵罐中进一步放大,可获得高达 74.54 g/L 的显著 L-PA 浓度。本研究为 L-PA 的工业规模生产提供了创新性的见解。