Suppr超能文献

通过逻辑回归分析确定聚类数量。

Determination of the number of clusters through logistic regression analysis.

作者信息

Modak Soumita

机构信息

Faculty, Department of Statistics, University of Calcutta, Basanti Devi College, Kolkata, India.

出版信息

J Appl Stat. 2023 Nov 20;51(12):2344-2363. doi: 10.1080/02664763.2023.2283687. eCollection 2024.

Abstract

We advise a novel measure to determine the unknown number of clusters underlying a designated sample through implementation of the parametric logistic regression model. The regression analysis is carried out to estimate the probabilities of inclusion for every individual member from data, irrespective of its parent distribution, to each of the clusters under existence. The proposed one is shown to be superior to its well-known rivals by means of both synthetic and real-world data sets, while designed to significantly reduce the computational burden serving our desired purpose.

摘要

我们建议采用一种新方法,通过实施参数逻辑回归模型来确定指定样本背后未知的聚类数量。进行回归分析是为了从数据中估计每个个体成员属于现有每个聚类的包含概率,而不考虑其母体分布。通过合成数据集和真实数据集表明,所提出的方法优于其著名的竞争对手,同时旨在显著减轻计算负担以满足我们的预期目的。

相似文献

1
Determination of the number of clusters through logistic regression analysis.通过逻辑回归分析确定聚类数量。
J Appl Stat. 2023 Nov 20;51(12):2344-2363. doi: 10.1080/02664763.2023.2283687. eCollection 2024.
6
Optimal Subsampling for Large Sample Logistic Regression.大样本逻辑回归的最优子采样
J Am Stat Assoc. 2018;113(522):829-844. doi: 10.1080/01621459.2017.1292914. Epub 2018 Jun 6.
8

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验