Suppr超能文献

区间特定删失集调整后的Kaplan-Meier估计量。

Interval-specific censoring set adjusted Kaplan-Meier estimator.

作者信息

Wu Yaoshi, Kolassa John

机构信息

Department of Statistics, UCONN, Storrs, CT, USA.

Department of Statistics, Rutgers, New Brunswick, NJ, USA.

出版信息

J Appl Stat. 2023 Dec 25;51(12):2436-2456. doi: 10.1080/02664763.2023.2298795. eCollection 2024.

Abstract

We propose a non-parametric approach to reduce the overestimation of the Kaplan-Meier (KM) estimator when the event and censoring times are independent. We adjust the KM estimator based on the interval-specific censoring set, a collection of intervals where censored data are observed between two adjacent event times. The proposed interval-specific censoring set adjusted KM estimator reduces to the KM estimator if there are no censored observations or the sample size tends to infinity and the proposed estimator is consistent, as is the case for the KM estimator. We prove theoretically that the proposed estimator reduces the overestimation compared to the KM estimator and provide a mathematical formula to estimate the variance of the proposed estimator based on Greenwood's approach. We also provide a modified log-rank test based on the proposed estimator. We perform four simulation studies to compare the proposed estimator with the KM estimator when the failure rate is constant, decreasing, increasing, and based on the flexible hazard method. The bias reduction in median survival time and survival rate using the proposed estimator is considerably large, especially when the censoring rate is high. The standard deviations are comparable between the two estimators. We implement the proposed and KM estimator for the Nonalcoholic Fatty Liver Disease patients from a population study. The results show the proposed estimator substantially reduce the overestimation in the presence of high observed censoring rate.

摘要

当事件时间和删失时间相互独立时,我们提出一种非参数方法来减少Kaplan-Meier(KM)估计量的高估问题。我们基于特定区间删失集来调整KM估计量,特定区间删失集是在两个相邻事件时间之间观察到删失数据的区间集合。如果没有删失观测值,或者样本量趋于无穷大,那么所提出的特定区间删失集调整后的KM估计量就会简化为KM估计量,并且与KM估计量一样,所提出的估计量是一致的。我们从理论上证明,与KM估计量相比,所提出的估计量减少了高估问题,并基于Greenwood方法提供了一个数学公式来估计所提出估计量的方差。我们还基于所提出的估计量提供了一种修正的对数秩检验。我们进行了四项模拟研究,以比较在所提出的估计量与KM估计量在失效率恒定、递减、递增的情况下,以及基于灵活风险方法时的表现。使用所提出的估计量时,中位生存时间和生存率的偏差减少相当大,尤其是在删失率较高时。两种估计量的标准差相当。我们对一项人群研究中的非酒精性脂肪性肝病患者应用了所提出的估计量和KM估计量。结果表明,在所观察到的删失率较高的情况下,所提出的估计量显著减少了高估问题。

相似文献

1
Interval-specific censoring set adjusted Kaplan-Meier estimator.区间特定删失集调整后的Kaplan-Meier估计量。
J Appl Stat. 2023 Dec 25;51(12):2436-2456. doi: 10.1080/02664763.2023.2298795. eCollection 2024.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验