Klein J P, Lee S C, Moeschberger M L
Department of Statistics, Ohio State University, Columbus 43210.
Biometrics. 1990 Sep;46(3):795-811.
Many biological or medical experiments have as their goal to estimate the survival function of a specified population of subjects when the time to the specified event may be censored due to loss to follow-up, the occurrence of another event that precludes the occurrence of the event of interest, or the study being terminated before the event of interest occurs. This paper suggests an improvement of the Kaplan-Meier product-limit estimator when the censoring mechanism is random. The proposed estimator treats the uncensored observations nonparametrically and uses a parametric model only for the censored observations. One version of this proposed estimator always has a smaller bias and mean squared error than the product-limit estimator. An example estimating the survival function of patients enrolled in the Ohio State University Bone Marrow Transplant Program is presented.
许多生物学或医学实验的目标是估计特定受试人群的生存函数,此时由于失访、出现另一个排除了感兴趣事件发生的事件或在感兴趣事件发生之前研究终止,导致到特定事件的时间可能被截尾。本文提出了一种在截尾机制为随机时对Kaplan-Meier乘积限估计量的改进方法。所提出的估计量对未截尾观测值采用非参数方法处理,仅对截尾观测值使用参数模型。该估计量的一个版本总是比乘积限估计量具有更小的偏差和均方误差。文中给出了一个估计俄亥俄州立大学骨髓移植项目中患者生存函数的例子。