Suppr超能文献

存在随机删失数据时生存情况的一种部分参数估计量。

A partially parametric estimator of survival in the presence of randomly censored data.

作者信息

Klein J P, Lee S C, Moeschberger M L

机构信息

Department of Statistics, Ohio State University, Columbus 43210.

出版信息

Biometrics. 1990 Sep;46(3):795-811.

PMID:2242415
Abstract

Many biological or medical experiments have as their goal to estimate the survival function of a specified population of subjects when the time to the specified event may be censored due to loss to follow-up, the occurrence of another event that precludes the occurrence of the event of interest, or the study being terminated before the event of interest occurs. This paper suggests an improvement of the Kaplan-Meier product-limit estimator when the censoring mechanism is random. The proposed estimator treats the uncensored observations nonparametrically and uses a parametric model only for the censored observations. One version of this proposed estimator always has a smaller bias and mean squared error than the product-limit estimator. An example estimating the survival function of patients enrolled in the Ohio State University Bone Marrow Transplant Program is presented.

摘要

许多生物学或医学实验的目标是估计特定受试人群的生存函数,此时由于失访、出现另一个排除了感兴趣事件发生的事件或在感兴趣事件发生之前研究终止,导致到特定事件的时间可能被截尾。本文提出了一种在截尾机制为随机时对Kaplan-Meier乘积限估计量的改进方法。所提出的估计量对未截尾观测值采用非参数方法处理,仅对截尾观测值使用参数模型。该估计量的一个版本总是比乘积限估计量具有更小的偏差和均方误差。文中给出了一个估计俄亥俄州立大学骨髓移植项目中患者生存函数的例子。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验