Mehta Shubham K, Mondal Indrajit, Yadav Bhupesh, Kulkarni Giridhar U
Chemistry & Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P. O., Bangalore-560064, India.
Nanoscale. 2024 Oct 10;16(39):18365-18374. doi: 10.1039/d4nr02748e.
The development of synaptic devices featuring metallic nanostructures with brain-analog hierarchical architecture, capable of mimicking cognitive functionalities, has emerged as a focal point in neuromorphic computing. However, existing challenges, such as inconsistent and unpredictable switching, high voltage requirements, unguided filament formation, and detailed fabrication processes, have impeded technological progress in the domain. The present study addresses some of these challenges by leveraging periodic nanostructures of Ag fabricated plasma-assisted nanosphere lithography (NSL). The triangular nanostructures with a preferred orientation offer enhanced localized electric fields, facilitating low voltage electromigration at the sharp edges to guide predictive filament formation. A thorough investigation into gap control between the nanostructures through oxygen plasma treatment enables the attainment of an optimized low switching voltage of 0.86 V and retention at an ultra-low current compliance of 100 nA. The optimized device consumes low power, typically in the fJ range, akin to biological neurons. Furthermore, the device showcases intriguing synaptic characteristics, including controlled transition from short- to long-term potentiation, associative learning, ., projecting its potential in perceptive learning, memory formation, and brain-inspired computing. COMSOL Multiphysics simulation, supported by electron microscopic imaging, confirms the controlled and predictable filament formation facilitated by electric field enhancement across the strategic nanostructures. Thus, the work highlights the potential of NSL-based cost-effective fabrication techniques for realizing efficient and biomimetic synaptic devices for neuromorphic computing applications.
具有金属纳米结构且具备类脑层次结构、能够模拟认知功能的突触器件的发展,已成为神经形态计算的一个焦点。然而,诸如不一致且不可预测的开关特性、高电压要求、无引导的细丝形成以及详细的制造工艺等现有挑战,阻碍了该领域的技术进步。本研究通过利用等离子体辅助纳米球光刻(NSL)制造的银的周期性纳米结构来应对其中一些挑战。具有择优取向的三角形纳米结构提供了增强的局部电场,有助于在尖锐边缘处实现低电压电迁移以引导可预测的细丝形成。通过氧等离子体处理对纳米结构之间的间隙控制进行深入研究,能够实现0.86 V的优化低开关电压,并在100 nA的超低电流顺应性下保持。优化后的器件功耗低,通常在飞焦范围内,类似于生物神经元。此外,该器件展示出有趣的突触特性,包括从短期到长期增强的可控转变、联想学习等,凸显了其在感知学习、记忆形成和脑启发计算方面的潜力。由电子显微镜成像支持的COMSOL多物理场模拟证实了通过跨越关键纳米结构的电场增强实现的可控且可预测的细丝形成。因此,这项工作突出了基于NSL的具有成本效益的制造技术在实现用于神经形态计算应用的高效且仿生突触器件方面的潜力。