Wang Mengxin, Wu Yuhu, Qin Sitian
IEEE Trans Neural Netw Learn Syst. 2025 Apr;36(4):7637-7650. doi: 10.1109/TNNLS.2024.3408241. Epub 2025 Apr 4.
This article proposes a novel adaptive neurodynamic algorithm (ANA) to seek generalized Nash equilibrium (GNE) of the noncooperative constrained game with different monotone conditions. In the ANA, the adaptive penalty term, which acts as trajectory-dependent penalty parameters, evolves based on the degree of constraints violation until the trajectory enters the action set of noncooperative game. It is shown that the trajectory of the ANA enters the action set in finite time benefited from the adaptive penalty term. Moreover, it is proven that the trajectory exponentially (or polynomially) converges to the unique GNE when the pseudo-gradient of cost function in noncooperative game satisfies strong (or "generalized" strong) monotonicity. To the best of our knowledge, this is the first time to study the polynomial convergence of GNE seeking algorithm. Furthermore, when the pseudo-gradient mentioned above satisfies monotonicity in general, based on Tikhonov regularization method, a new ANA for finding its $\varepsilon $ -generalized Nash equilibrium ( $\varepsilon $ -GNE) is proposed, and the related exponential convergence of the algorithm is established. Finally, the river basin pollution game and 5G base station location game are given as examples to showcase the algorithm's effectiveness.
本文提出了一种新颖的自适应神经动力学算法(ANA),用于求解具有不同单调条件的非合作约束博弈的广义纳什均衡(GNE)。在ANA中,作为轨迹依赖惩罚参数的自适应惩罚项,会根据约束违反程度进行演化,直到轨迹进入非合作博弈的行动集。结果表明,得益于自适应惩罚项,ANA的轨迹在有限时间内进入行动集。此外,当非合作博弈中成本函数的伪梯度满足强(或“广义”强)单调性时,证明了轨迹指数(或多项式)收敛到唯一的GNE。据我们所知,这是首次研究GNE搜索算法的多项式收敛性。此外,当上述伪梯度一般满足单调性时,基于蒂霍诺夫正则化方法,提出了一种用于寻找其$\varepsilon$ -广义纳什均衡($\varepsilon$ -GNE)的新ANA,并建立了该算法的相关指数收敛性。最后,给出流域污染博弈和5G基站选址博弈作为示例,以展示该算法的有效性。