Suppr超能文献

一种用于生物医学信号中事件标注的人工参与方法。

A Human-in-the-Loop Method for Annotation of Events in Biomedical Signals.

作者信息

Seeuws Nick, De Vos Maarten, Bertrand Alexander

出版信息

IEEE J Biomed Health Inform. 2025 Jan;29(1):95-106. doi: 10.1109/JBHI.2024.3460533. Epub 2025 Jan 7.

Abstract

OBJECTIVE

Building large-scale data bases of biomedical signal recordings for training artificial-intelligence systems involves substantial human effort in data processing and annotation. In the case of event detection, experts need to exhaustively scroll through the recordings and highlight events of interest.

METHODS

We propose an iterative annotation support algorithm with a human in the loop to improve the efficiency of the annotation process. Our algorithm generates proposal events based on an event detection model trained on incomplete annotations. The human only needs to verify candidate events proposed by the tool instead of scrolling through the entire data set. Our algorithm iterates between proposal generation and verification to leverage the human-in-the-loop feedback to obtain a growing set of event annotations.

RESULTS

Our algorithm finds a substantial amount of events at a fraction of the human time spent when comparing with a benchmark method and the normal manual process, finding all events in one data set and 70% of events in another with the human-in-the-loop only viewing 20% of the data.

CONCLUSION

Our results show that combining human and computer effort can substantially speed up the annotation process for events in biomedical signal processing.

SIGNIFICANCE

Due to its simplicity and minimal reliance on task-specific information, our algorithm is broadly applicable, unlocking substantial improvements in the scalability and efficiency of biomedical signal annotation.

摘要

目的

构建用于训练人工智能系统的生物医学信号记录大规模数据库,在数据处理和标注方面需要大量人力。在事件检测中,专家需要详尽地浏览记录并突出显示感兴趣的事件。

方法

我们提出一种带人工参与的迭代标注支持算法,以提高标注过程的效率。我们的算法基于在不完整标注上训练的事件检测模型生成候选事件。人工只需要验证该工具提出的候选事件,而无需浏览整个数据集。我们的算法在候选事件生成和验证之间进行迭代,以利用人工参与的反馈来获得不断增加的事件标注集。

结果

与基准方法和常规手动流程相比,我们的算法以一小部分人工时间找到了大量事件,在一个数据集中找到了所有事件,在另一个数据集中找到了70%的事件,而人工参与只查看了20%的数据。

结论

我们的结果表明,将人工与计算机的努力相结合,可以大幅加快生物医学信号处理中事件的标注过程。

意义

由于其简单性以及对特定任务信息的最小依赖,我们的算法具有广泛的适用性,在生物医学信号标注的可扩展性和效率方面实现了大幅提升。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验