Suppr超能文献

患者记录中的医生和编码错误。

Physician and coding errors in patient records.

作者信息

Lloyd S S, Rissing J P

出版信息

JAMA. 1985 Sep 13;254(10):1330-6.

PMID:3927014
Abstract

The Veterans Administration's discharge abstract system was studied to identify error frequency, source, and effect in five Veterans Administration hospitals. We reviewed 1,829 medical records from 21 services for concordance with the abstract; sampling provided 95% confidence for each service. Of these records, 1,499 (82%) differed from the abstract in at least one item. Of 20,260 items, 4,360 (22%) were incorrect, with three error sources: physician (62%), coding (35%), and keypunch (3%). We projected 2.14 physician and 0.81 coding errors in the average abstract. Eighty-nine percent of projected physician errors were failures to report a procedure or diagnosis. Coding was subjective and errors were synergistic with physician errors. We projected that correction of errors would change 19% of the records for diagnosis-related group purposes and substantially increase future resource allocation. This effect varied considerably by service.

摘要

对退伍军人管理局的出院摘要系统进行了研究,以确定五家退伍军人管理局医院中的错误频率、来源及影响。我们审查了来自21个科室的1829份病历,以与摘要进行比对;抽样为每个科室提供了95%的置信度。在这些病历中,1499份(82%)在至少一项内容上与摘要不同。在20260项内容中,4360项(22%)有误,有三个错误来源:医生(62%)、编码(35%)和打孔(3%)。我们预计平均每份摘要中存在2.14个医生错误和0.81个编码错误。预计89%的医生错误是未报告某项手术或诊断。编码具有主观性,且错误与医生错误具有协同性。我们预计,错误的纠正将使19%的病历在诊断相关分组方面发生变化,并大幅增加未来的资源分配。这种影响因科室而异。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验