Ivars Salim B, Milián Carles, Botey Muriel, Herrero Ramon, Staliunas Kestutis
Departament de Física, <a href="https://ror.org/03mb6wj31">Universitat Politècnica de Catalunya (UPC)</a>, Rambla Sant Nebridi 22, 08222, Terrassa, Barcelona, Catalonia, Spain.
Institut Universitari de Matemàtica Pura i Aplicada, <a href="https://ror.org/01460j859">Universitat Politècnica de València</a>, 46022 València, Spain.
Phys Rev Lett. 2024 Aug 30;133(9):093802. doi: 10.1103/PhysRevLett.133.093802.
We unveil a new scenario for the formation of dissipative localized structures in nonlinear systems. Commonly, the formation of such structures arises from the connection of a homogeneous steady state with either another homogeneous solution or a pattern. Both scenarios, typically found in cavities with normal and anomalous dispersion, respectively, exhibit unique fingerprints and particular features that characterize their behavior. However, we show that the introduction of a periodic non-Hermitian modulation in Kerr cavities hybridizes the two established soliton formation mechanisms, embodying the particular fingerprints of both. In the resulting novel scenario, the stationary states acquire a dual behavior, playing the role that was unambiguously attributed to either homogeneous states or patterns. These fundamental findings have profound practical implications for frequency comb generation, introducing unprecedented reversible mechanisms for real-time manipulation.
我们揭示了非线性系统中耗散局域结构形成的一种新情况。通常,此类结构的形成源于均匀稳态与另一个均匀解或一种模式的连接。这两种情况分别典型地出现在具有正常色散和反常色散的腔中,展现出独特的特征以及表征其行为的特定特性。然而,我们表明在克尔腔中引入周期性非厄米调制会使两种已确立的孤子形成机制相互杂交,体现出两者的特定特征。在由此产生的新情况中,稳态呈现出双重行为,发挥着之前明确归因于均匀态或模式的作用。这些基础发现对频率梳产生具有深远的实际意义,为实时操控引入了前所未有的可逆机制。