Suppr超能文献

非厄米克尔腔中的混合模式与孤子频率梳

Hybrid Patterns and Solitonic Frequency Combs in Non-Hermitian Kerr Cavities.

作者信息

Ivars Salim B, Milián Carles, Botey Muriel, Herrero Ramon, Staliunas Kestutis

机构信息

Departament de Física, <a href="https://ror.org/03mb6wj31">Universitat Politècnica de Catalunya (UPC)</a>, Rambla Sant Nebridi 22, 08222, Terrassa, Barcelona, Catalonia, Spain.

Institut Universitari de Matemàtica Pura i Aplicada, <a href="https://ror.org/01460j859">Universitat Politècnica de València</a>, 46022 València, Spain.

出版信息

Phys Rev Lett. 2024 Aug 30;133(9):093802. doi: 10.1103/PhysRevLett.133.093802.

Abstract

We unveil a new scenario for the formation of dissipative localized structures in nonlinear systems. Commonly, the formation of such structures arises from the connection of a homogeneous steady state with either another homogeneous solution or a pattern. Both scenarios, typically found in cavities with normal and anomalous dispersion, respectively, exhibit unique fingerprints and particular features that characterize their behavior. However, we show that the introduction of a periodic non-Hermitian modulation in Kerr cavities hybridizes the two established soliton formation mechanisms, embodying the particular fingerprints of both. In the resulting novel scenario, the stationary states acquire a dual behavior, playing the role that was unambiguously attributed to either homogeneous states or patterns. These fundamental findings have profound practical implications for frequency comb generation, introducing unprecedented reversible mechanisms for real-time manipulation.

摘要

我们揭示了非线性系统中耗散局域结构形成的一种新情况。通常,此类结构的形成源于均匀稳态与另一个均匀解或一种模式的连接。这两种情况分别典型地出现在具有正常色散和反常色散的腔中,展现出独特的特征以及表征其行为的特定特性。然而,我们表明在克尔腔中引入周期性非厄米调制会使两种已确立的孤子形成机制相互杂交,体现出两者的特定特征。在由此产生的新情况中,稳态呈现出双重行为,发挥着之前明确归因于均匀态或模式的作用。这些基础发现对频率梳产生具有深远的实际意义,为实时操控引入了前所未有的可逆机制。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验