O'Reilly Jameson, Toh George, Goetting Isabella, Saha Sagnik, Shalaev Mikhail, Carter Allison L, Risinger Andrew, Kalakuntla Ashish, Li Tingguang, Verma Ashrit, Monroe Christopher
Duke Quantum Center, Departments of Electrical and Computer Engineering and Physics, <a href="https://ror.org/00py81415">Duke University</a>, Durham, North Carolina 27708, USA.
<a href="https://ror.org/04xz38214">Joint Quantum Institute</a>, Departments of Physics and Electrical and Computer Engineering, <a href="https://ror.org/047s2c258">University of Maryland</a>, College Park, Maryland 20742, USA.
Phys Rev Lett. 2024 Aug 30;133(9):090802. doi: 10.1103/PhysRevLett.133.090802.
We entangle two cotrapped atomic barium ion qubits by collecting single visible photons from each ion through in vacuo 0.8 NA objectives, interfering them through an integrated fiber beam splitter and detecting them in coincidence. This projects the qubits into an entangled Bell state with an observed fidelity lower bound of F>94%. We also introduce an ytterbium ion for sympathetic cooling to remove the need for recooling interruptions and achieve a continuous entanglement rate of 250 s^{-1}.
我们通过真空环境下的0.8数值孔径物镜从每个离子收集单个可见光子,使两个共囚禁的钡离子量子比特发生纠缠,通过集成光纤分束器对光子进行干涉,并对其进行符合探测。这将量子比特投影到一个纠缠的贝尔态,观察到的保真度下限为F>94%。我们还引入了一个镱离子用于协同冷却,以消除重新冷却中断的需要,并实现250 s⁻¹的连续纠缠率。