Saha Sagnik, Shalaev Mikhail, O'Reilly Jameson, Goetting Isabella, Toh George, Kalakuntla Ashish, Yu Yichao, Monroe Christopher
Duke Quantum Center, Departments of Electrical and Computer Engineering and Physics, Duke University, Durham, NC, USA.
Nat Commun. 2025 Mar 14;16(1):2533. doi: 10.1038/s41467-025-57557-4.
Photonic interconnects between quantum processing nodes are likely the only way to achieve large-scale quantum computers and networks. The bottleneck in such an architecture is the interface between well-isolated quantum memories and flying photons. We establish high-fidelity entanglement between remotely separated trapped atomic qubit memories, mediated by photonic qubits stored in the timing of their pulses. Such time-bin encoding removes sensitivity to polarization errors, enables long-distance quantum communication, and is extensible to quantum memories with more than two states. Using a measurement-based error detection process and suppressing a fundamental source of error due to atomic recoil, we achieve an entanglement fidelity of 97% and show that fundamental limits due to atomic recoil still allow fidelities in excess of 99.9%.
量子处理节点之间的光子互连可能是实现大规模量子计算机和网络的唯一途径。这种架构的瓶颈在于良好隔离的量子存储器与飞行光子之间的接口。我们通过存储在脉冲定时中的光子量子比特介导,在远程分离的俘获原子量子比特存储器之间建立了高保真纠缠。这种时间编码消除了对偏振误差的敏感性,实现了长距离量子通信,并且可扩展到具有两个以上状态的量子存储器。通过基于测量的误差检测过程并抑制由于原子反冲引起的基本误差源,我们实现了97%的纠缠保真度,并表明由于原子反冲导致的基本限制仍然允许保真度超过99.9%。