Xie Ying-Ming, Liu Yizhou, Nagaosa Naoto
<a href="https://ror.org/03gv2xk61">RIKEN Center for Emergent Matter Science (CEMS)</a>, Wako, Saitama 351-0198, Japan.
Fundamental Quantum Science Program, TRIP Headquarters, <a href="https://ror.org/01sjwvz98">RIKEN</a>, Wako 351-0198, Japan.
Phys Rev Lett. 2024 Aug 30;133(9):096702. doi: 10.1103/PhysRevLett.133.096702.
The skyrmion crystal (SkX) and helix (HL) phases, present in typical chiral magnets, can each be considered as forms of density waves but with distinct topologies. The SkX exhibits gyrodynamics analogous to electrons under a magnetic field, while the HL state resembles topological trivial spin density waves. However, unlike the charge density waves, the theoretical analysis of the sliding motion of SkX and HL remains unclear, especially regarding the similarities and differences in sliding dynamics between these two spin density waves. In this Letter, we systematically explore the sliding dynamics of SkX and HL in chiral magnets in the limit of large current density. We demonstrate that the sliding dynamics of both SkX and HL can be unified within the same theoretical framework as density waves, despite their distinct microscopic orders. Furthermore, we highlight the significant role of gyrotropic sliding induced by impurity effects in the SkX state, underscoring the impact of nontrivial topology on the sliding motion of density waves. Our theoretical analysis shows that the effect of impurity pinning is much stronger in HL compared with SkX, i.e., χ^{SkX}/χ^{HL}∼α^{2} (χ^{SkX}, χ^{HL}: susceptibility to the impurity potential, α (≪1) is the Gilbert damping). Moreover, the velocity correction is mostly in the transverse direction to the current in SkX. These results are further substantiated by realistic Landau-Lifshitz-Gilbert simulations.
典型手性磁体中存在的斯格明子晶体(SkX)相和螺旋(HL)相,均可被视为密度波的形式,但具有不同的拓扑结构。SkX在磁场下表现出类似于电子的陀螺动力学,而HL态类似于拓扑平凡的自旋密度波。然而,与电荷密度波不同的是,SkX和HL滑动运动的理论分析仍不明确,尤其是这两种自旋密度波在滑动动力学方面的异同。在本信函中,我们系统地研究了手性磁体中SkX和HL在大电流密度极限下的滑动动力学。我们证明,尽管SkX和HL具有不同的微观有序性,但它们的滑动动力学可以在与密度波相同的理论框架内统一起来。此外,我们强调了杂质效应在SkX态中诱导的回转滑动的重要作用,突出了非平凡拓扑对密度波滑动运动的影响。我们的理论分析表明,与SkX相比,杂质钉扎在HL中的作用要强得多,即χ^{SkX}/χ^{HL}∼α^{2}(χ^{SkX}、χ^{HL}:对杂质势的敏感度,α(≪1)为吉尔伯特阻尼)。此外,SkX中速度修正主要在与电流垂直的方向上。这些结果通过实际的朗道-里夫希茨-吉尔伯特模拟得到了进一步证实。