Liu Qianwen, Zhang Chengjingmeng, Li Ruidong, Li Jie, Zheng Bingyue, Song Shuxin, Chen Lihua, Li Tingxi, Ma Yong
School of Material Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, P. R. China.
School of Material Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, P. R. China.
J Colloid Interface Sci. 2025 Jan 15;678(Pt B):902-914. doi: 10.1016/j.jcis.2024.09.068. Epub 2024 Sep 10.
The limited energy density of supercapacitors hampers their widespread application in electronic devices. Metal oxides, employed as electrode materials, suffer from low conductivity and stability, prompting extensive research in recent years to enhance their electrochemical properties. Among these efforts, the construction of core-shell heterostructures and the utilization of oxygen vacancy (V) engineering have emerged as pivotal strategies for improving material stability and ion diffusion rates. Herein, core-shell composites comprising NiCoS nanospheres and MnO nanosheets are grown in situ on carbon cloth (CC), forming nanoflower clusters while introducing V defects through a chemical reduction method. Density functional theory (DFT) results proves that the existence of V effectively enhances electronic and structural properties of MnO, thereby enhancing capacitive properties. The electrochemical test results show that NiCoS@MnO-V exhibits excellent 1376 F g mass capacitance and 2.06 F cm area capacitance at 1 A g. Moreover, NiCoS@MnO-V//activated carbon (AC) asymmetric supercapacitor (ASC) can achieve an energy density of 39.7 Wh kg at a power density of 775 W kg, and maintains 15.5 Wh kg even at 7749.77 W kg. Capacitance retention is 73.1 % after 10,000 cycles at 5 A g, and coulombic efficiency reaches 100 %, demonstrating satisfactory cycle stability. In addition, the device's excellent flexibility offers broad application prospects in wearable electronic applications.
超级电容器有限的能量密度阻碍了它们在电子设备中的广泛应用。用作电极材料的金属氧化物存在导电性和稳定性低的问题,这促使近年来开展了广泛研究以增强其电化学性能。在这些努力中,构建核壳异质结构和利用氧空位(V)工程已成为提高材料稳定性和离子扩散速率的关键策略。在此,由NiCoS纳米球和MnO纳米片组成的核壳复合材料原位生长在碳布(CC)上,形成纳米花簇,同时通过化学还原法引入V缺陷。密度泛函理论(DFT)结果证明,V的存在有效地增强了MnO的电子和结构性能,从而提高了电容性能。电化学测试结果表明,NiCoS@MnO-V在1 A g时表现出优异的1376 F g质量电容和2.06 F cm面积电容。此外,NiCoS@MnO-V//活性炭(AC)不对称超级电容器(ASC)在功率密度为775 W kg时可实现39.7 Wh kg的能量密度,即使在7749.77 W kg时也能保持15.5 Wh kg。在5 A g下循环10000次后电容保持率为73.1%,库仑效率达到100%,显示出令人满意的循环稳定性。此外,该器件出色的柔韧性在可穿戴电子应用中具有广阔的应用前景。