Suppr超能文献

优化大流行早期阶段瞬时再生数的估计:应对病例报告变异性和潜伏期不确定性

Refining Estimation of the Instantaneous Reproduction Number During Early Pandemic Stages: Addressing Case-Reporting Variability and Serial Interval Uncertainty.

作者信息

Hettinger Gary, Rubin David, Huang Jing

机构信息

Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States.

Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, United States.

出版信息

Am J Epidemiol. 2024 Sep 11;194(7):2012-22. doi: 10.1093/aje/kwae356.

Abstract

During infectious disease outbreaks, estimates for the instantaneous reproduction number, R(t), are essential for understanding transmission dynamics. This study develops and analyzes new methodology to improve estimation of R(t) when observed case counts are subject to reporting patterns and available serial interval estimates are subject to uncertainty and non-representativeness. Specifically, we developed a Bayesian time-since-infection model with layers to adjust for reporting measurement error, integrate multiple candidate serial interval estimates, and estimate transmission with an autoregressive time-series model incorporating factors relevant to transmission. Additionally, we provide practical tools to identify reporting patterns and determine when to smooth case counts for more usable R(t) estimates. We evaluated model performance relative to widely adopted methodology by simulating outbreak data, finding improved R(t) estimation with the proposed methodology. We also used 2020 COVID-19 data to analyze transmission trends and predictors, identifying strong day-of-week and social distancing effects that subsequently reduced estimate volatility. In addition to new approaches for addressing serial interval uncertainty and incorporating transmission predictor information, this study provides an alternative approach for addressing case-reporting patterns without delaying detection or smoothing over relevant transmission signals. These tools and findings may be used or built upon for current and future outbreaks.

摘要

在传染病爆发期间,对瞬时再生数R(t)的估计对于理解传播动态至关重要。本研究开发并分析了新的方法,以在观察到的病例数受报告模式影响且可用的序列间隔估计存在不确定性和非代表性的情况下,改进对R(t)的估计。具体而言,我们开发了一种带有分层的感染时间贝叶斯模型,以调整报告测量误差、整合多个候选序列间隔估计,并使用包含与传播相关因素的自回归时间序列模型来估计传播。此外,我们提供了实用工具来识别报告模式,并确定何时对病例数进行平滑处理以获得更有用的R(t)估计。我们通过模拟爆发数据评估了相对于广泛采用的方法的模型性能,发现所提出的方法改进了R(t)估计。我们还使用2020年新冠肺炎数据来分析传播趋势和预测因素,识别出显著的周几效应和社会距离效应,这些效应随后降低了估计的波动性。除了处理序列间隔不确定性和纳入传播预测信息的新方法外,本研究还提供了一种解决病例报告模式的替代方法,而不会延迟检测或平滑相关的传播信号。这些工具和发现可用于当前和未来的疫情爆发,并在此基础上进一步发展。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4d2e/12234227/23339fbb08e5/kwae356f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验