School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, People's Republic of China.
Department of Cardiology, Gongli Hospital of Shanghai Pudong New Area, Shanghai 200135, People's Republic of China.
Physiol Meas. 2024 Sep 24;45(9). doi: 10.1088/1361-6579/ad7ad4.
This paper tackles the challenge of accurately detecting second-degree and third-degree atrioventricular block (AVB) in electrocardiogram (ECG) signals through automated algorithms. The inaccurate detection of P-waves poses a difficulty in this process. To address this limitation, we propose a reliable method that significantly improves the performances of AVB detection by precisely localizing P-waves.Our proposed P-WaveNet utilized an attention mechanism to extract spatial and temporal features, and employs a bidirectional long short-term memory module to capture inter-temporal dependencies within the ECG signal. To overcome the scarcity of data for second-degree and third-degree AVB (2AVB,3AVB), a mathematical approach was employed to synthesize pseudo-data. By combining P-wave positions identified by the P-WaveNet with key medical features such as RR interval rhythm and PR intervals, we established a classification rule enabling automatic AVB detection.. The P-WaveNet achieved an F1 score of 93.62% and 91.42% for P-wave localization on the QT Dataset and Lobachevsky University dataset datasets, respectively. In the BUTPDB dataset, the F1 scores for P-wave localization in ECG signals with 2AVB and 3AVB were 98.29% and 62.65%, respectively. Across two independent datasets, the AVB detection algorithm achieved F1 scores of 83.33% and 84.15% for 2AVB and 3AVB, respectively.Our proposed P-WaveNet demonstrates accurate identification of P-waves in complex ECGs, significantly enhancing AVB detection efficacy. This paper's contributions stem from the fusion of medical expertise with data augmentation techniques and ECG classification. The proposed P-WaveNet demonstrates potential clinical applicability.
本文探讨了通过自动化算法在心电图(ECG)信号中准确检测二度和三度房室传导阻滞(AVB)的挑战。在此过程中,P 波的不准确检测是一个难题。为了解决这一限制,我们提出了一种可靠的方法,通过精确定位 P 波,显著提高了 AVB 检测的性能。
我们提出的 P-WaveNet 利用注意力机制提取时空特征,并采用双向长短时记忆模块捕获 ECG 信号内的时间依赖性。为了克服二度和三度 AVB(2AVB、3AVB)数据稀缺的问题,我们采用了一种数学方法来合成伪数据。通过将 P-WaveNet 识别的 P 波位置与 RR 间隔节律和 PR 间隔等关键医学特征相结合,我们建立了一个分类规则,实现了自动 AVB 检测。
在 QT 数据集和洛巴切夫斯基大学数据集上,P-WaveNet 在 P 波定位方面的 F1 得分分别为 93.62%和 91.42%。在 BUTPDB 数据集上,P-WaveNet 在 2AVB 和 3AVB 心电图信号中的 P 波定位的 F1 得分分别为 98.29%和 62.65%。在两个独立的数据集上,AVB 检测算法在 2AVB 和 3AVB 中的 F1 得分分别为 83.33%和 84.15%。
我们提出的 P-WaveNet 能够在复杂的 ECG 中准确识别 P 波,显著提高了 AVB 检测的效果。本文的贡献源于将医学专业知识与数据增强技术和 ECG 分类相结合。所提出的 P-WaveNet 具有潜在的临床应用价值。