Suppr超能文献

变压器架构在神经外科教育的生成式视频建模中的应用。

Application of transformer architectures in generative video modeling for neurosurgical education.

作者信息

Lawson McLean Aaron, Gutiérrez Pineda Felipe

机构信息

Department of Neurosurgery, Jena University Hospital - Friedrich Schiller University Jena, Am Klinikum 1, 07747, Jena, Germany.

Department of Neurosurgery, School of Medicine, University of Antioquia, Medellin, Colombia.

出版信息

Int J Comput Assist Radiol Surg. 2025 Apr;20(4):797-805. doi: 10.1007/s11548-024-03266-0. Epub 2024 Sep 13.

Abstract

PURPOSE

This article explores the potential impact of OpenAI's Sora, a generative video modeling technology, on neurosurgical training. It evaluates how such technology could revolutionize the field by providing realistic surgical simulations, thereby enhancing the learning experience and proficiency in complex procedures for neurosurgical trainees.

METHODS

The study examines the incorporation of this technology into neurosurgical education by leveraging transformer architecture and processing of video and image data. It involves compiling a neurosurgical procedure dataset for model training, aiming to create accurate, high-fidelity simulations.

RESULTS

Our findings indicate significant potential applications in neurosurgical training, including immersive simulations for skill development and exposure to diverse surgical scenarios. The technology also promises to transform assessment and feedback, introducing a standardized, objective way to measure and improve trainee competencies.

CONCLUSION

Integrating generative video modeling technology into neurosurgical education marks a progressive step toward enhancing training methodologies. Despite challenges in technical, ethical, and practical domains, continuous development and evaluation could lead to substantial advancements in surgical education, preparing neurosurgeons more effectively for their demanding roles.

摘要

目的

本文探讨了OpenAI的Sora(一种生成式视频建模技术)对神经外科培训的潜在影响。它评估了这种技术如何通过提供逼真的手术模拟来彻底改变该领域,从而增强神经外科实习生在复杂手术中的学习体验和熟练度。

方法

该研究通过利用Transformer架构以及视频和图像数据处理,考察了将此技术纳入神经外科教育的情况。它涉及为模型训练编制神经外科手术数据集,旨在创建准确、高保真的模拟。

结果

我们的研究结果表明,该技术在神经外科培训中有显著的潜在应用,包括用于技能发展的沉浸式模拟以及接触各种手术场景。这项技术还有望改变评估和反馈方式,引入一种标准化、客观的方法来衡量和提高实习生的能力。

结论

将生成式视频建模技术整合到神经外科教育中标志着在改进培训方法方面迈出了进步的一步。尽管在技术、伦理和实践领域存在挑战,但持续的开发和评估可能会在外科教育方面取得重大进展,更有效地让神经外科医生为其艰巨的职责做好准备。

相似文献

1
Application of transformer architectures in generative video modeling for neurosurgical education.
Int J Comput Assist Radiol Surg. 2025 Apr;20(4):797-805. doi: 10.1007/s11548-024-03266-0. Epub 2024 Sep 13.
2
Creation of a novel simulator for minimally invasive neurosurgery: fusion of 3D printing and special effects.
J Neurosurg Pediatr. 2017 Jul;20(1):1-9. doi: 10.3171/2017.1.PEDS16568. Epub 2017 Apr 25.
3
A microcontroller-based simulation of dural venous sinus injury for neurosurgical training.
J Neurosurg. 2018 May;128(5):1553-1559. doi: 10.3171/2016.12.JNS162165. Epub 2017 Jun 2.
4
The "STARS-CASCADE" Study: Virtual Reality Simulation as a New Training Approach in Vascular Neurosurgery.
World Neurosurg. 2021 Oct;154:e130-e146. doi: 10.1016/j.wneu.2021.06.145. Epub 2021 Jul 17.
5
Roadmap for Developing Complex Virtual Reality Simulation Scenarios: Subpial Neurosurgical Tumor Resection Model.
World Neurosurg. 2020 Jul;139:e220-e229. doi: 10.1016/j.wneu.2020.03.187. Epub 2020 Apr 11.
6
Virtual Reality vs Phantom Model: Benefits and Drawbacks of Simulation Training in Neurosurgery.
Oper Neurosurg (Hagerstown). 2024 Nov 1;27(5):618-631. doi: 10.1227/ons.0000000000001167. Epub 2024 Jun 7.
7
Applying objective metrics to neurosurgical skill development with simulation and spaced repetition learning.
J Neurosurg. 2023 Mar 10;139(4):1092-1100. doi: 10.3171/2023.1.JNS222651. Print 2023 Oct 1.
9
Text-to-video generative artificial intelligence: sora in neurosurgery.
Neurosurg Rev. 2024 Jun 13;47(1):272. doi: 10.1007/s10143-024-02514-w.
10
Effects of Transcranial Direct-Current Stimulation on Neurosurgical Skill Acquisition: A Randomized Controlled Trial.
World Neurosurg. 2017 Dec;108:876-884.e4. doi: 10.1016/j.wneu.2017.08.123. Epub 2017 Aug 31.

引用本文的文献

1
Generative artificial intelligence in graduate medical education.
Front Med (Lausanne). 2025 Jan 10;11:1525604. doi: 10.3389/fmed.2024.1525604. eCollection 2024.

本文引用的文献

5
Correspondence on "Apple Intelligence in neurosurgery".
Neurosurg Rev. 2024 Aug 1;47(1):387. doi: 10.1007/s10143-024-02646-z.
6
Text-to-video generative artificial intelligence: sora in neurosurgery: correspondence.
Neurosurg Rev. 2024 Jun 29;47(1):298. doi: 10.1007/s10143-024-02541-7.
7
On the balance beam: facing the challenges of neurosurgical education in the third millennium.
Surg Neurol Int. 2024 Mar 22;15:102. doi: 10.25259/SNI_1014_2023. eCollection 2024.
8
Concerns with OpenAI's Sora in Medicine.
Ann Biomed Eng. 2024 Aug;52(8):1932-1934. doi: 10.1007/s10439-024-03505-0. Epub 2024 Apr 1.
9
How OpenAI's text-to-video tool Sora could change science - and society.
Nature. 2024 Mar;627(8004):475-476. doi: 10.1038/d41586-024-00661-0.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验